Solveeit Logo

Question

Question: A particle of mass m is attached to three identical springs A, B and C each of force constant k as s...

A particle of mass m is attached to three identical springs A, B and C each of force constant k as shown in figure. If the particle of mass m is pushed slightly against the spring A and released, then the time period of oscillation is –

A

2p2 mk\sqrt { \frac { 2 \mathrm {~m} } { \mathrm { k } } }

B

2p

C

2p mk\sqrt { \frac { \mathrm { m } } { \mathrm { k } } }

D

2p m3k\sqrt { \frac { \mathrm { m } } { 3 \mathrm { k } } }

Answer

2p

Explanation

Solution

T = 2πMK(1+2cos2θ)2 \pi \sqrt { \frac { \mathrm { M } } { \mathrm { K } \left( 1 + 2 \cos ^ { 2 } \theta \right) } }

= 2πMK(1+2cos245)2 \pi \sqrt { \frac { M } { K \left( 1 + 2 \cos ^ { 2 } 45 \right) } } = 2πM2 K2 \pi \sqrt { \frac { \mathrm { M } } { 2 \mathrm {~K} } }