Solveeit Logo

Question

Physics Question on Oscillations

A particle of mass mm is attached to a spring (of spring constant kk) and has a natural angular frequency ω0\omega_0. An external force F(t)F(t) proportional to cosωtcos\omega t (ω?ω0)(\omega?\omega_0) is applied to the oscillator. The time displacement of the oscillator will be proportional to

A

mω02ω2\frac{m}{\omega^{2}_{0}-\omega^{2}}

B

1m(ω02ω2)\frac{1}{m\left(\omega ^{2}_{0}-\omega ^{2}\right)}

C

1m(ω02+ω2)\frac{1}{m\left(\omega ^{2}_{0}+\omega ^{2}\right)}

D

mω02+ω2\frac{m}{\omega^{2}_{0}+\omega^{2}}

Answer

1m(ω02ω2)\frac{1}{m\left(\omega ^{2}_{0}-\omega ^{2}\right)}

Explanation

Solution

For forced oscillations, the displacement is given by x=Asin(?t+ϕ)x = A\, sin\left(?t + \phi\right) with A=F0/mω02ω2A = \frac{F _{0}/m}{\omega^{2}_{0}-\omega^{2}}