Solveeit Logo

Question

Question: A particle of mass m executing SHM with amplitude A and angular frequency \(\omega\). The average va...

A particle of mass m executing SHM with amplitude A and angular frequency ω\omega. The average value of the kinetic energy and potential energy over a period is

A

0, 12\frac{1}{2}mω\omega2A2

B

12\frac{1}{2}mω\omega2A2, 0

C

12\frac{1}{2}mω\omega2A2,mω\omega2A2

D

14\frac{1}{4}mω\omega2A2, mω\omega2A2

Answer

14\frac{1}{4}mω\omega2A2, mω\omega2A2

Explanation

Solution

Let the displacement of the particle executing SHM at any instant of time t from its equilibrium position is given by

x=Acos(ωt+φ)x = A\cos(\omega t + \varphi)

Velocity v=dxdt=ωAsin(ωt+φ)v = \frac{dx}{dt} = - \omega A\sin(\omega t + \varphi)

Kinetic energy of the particle is

k=12mv2=12mω2A2sin2(ωt+φ)k = \frac{1}{2}mv^{2} = \frac{1}{2}m\omega^{2}A^{2}\sin^{2}(\omega t + \varphi)

Potential energy of the particle is

U=12mω2x2=12mω2A2cos2(ωt+φ)U = \frac{1}{2}m\omega^{2}x^{2} = \frac{1}{2}m\omega^{2}A^{2}\cos^{2}(\omega t + \varphi)

Average value of kinetic energy over a period is

<K>=1T0TKdt=1T0T12mω2A2sin2(ωt+φ)dt< K > = \frac{1}{T}\int_{0}^{T}{Kdt} = \frac{1}{T}\int_{0}^{T}{\frac{1}{2}m\omega^{2}A^{2}\sin^{2}(\omega t + \varphi)dt}

=12Tmω2A20T[1cos2(ωt+φ)2]dt= \frac{1}{2T}m\omega^{2}A^{2}\int_{0}^{T}\left\lbrack \frac{1 - \cos 2(\omega t + \varphi)}{2} \right\rbrack dt

Since the average value of both a sine and a cosine function for a complete cycle or over a time period T is 0.

<K>=14Tmω2A2[t]0T=14Tmω2A2T=14mω2A2\therefore < K > = \frac{1}{4T}m\omega^{2}A^{2}\lbrack t\rbrack_{0}^{T} = \frac{1}{4T}m\omega^{2}A^{2}T = \frac{1}{4}m\omega^{2}A^{2}average value of potential energy over a period is

<U>=1T0T12mω2A2cos2(ωt+φ)dt< U > = \frac{1}{T}\int_{0}^{T}{\frac{1}{2}m\omega^{2}A^{2}\cos^{2}(\omega t + \varphi)dt}

=12Tmω2A20T[1+cos2(ωt+φ)2]dt= \frac{1}{2T}m\omega^{2}A^{2}\int_{0}^{T}\left\lbrack \frac{1 + \cos 2(\omega t + \varphi)}{2} \right\rbrack dt

Since the average value of both a sine and a cosine function for a complete cycle or over a time period T is zero.

<U>=14Tmω2A2[t]0T=14Tmω2A2T=14mω2A2\therefore < U > = \frac{1}{4T}m\omega^{2}A^{2}\lbrack t\rbrack_{0}^{T} = \frac{1}{4T}m\omega^{2}A^{2}T = \frac{1}{4}m\omega^{2}A^{2}