Solveeit Logo

Question

Physics Question on simple harmonic motion

A particle of mass mm executes simple harmonic motion with amplitude a and frequency nn. The average kinetic energy during its motion from the position of equilibrium to the end is.

A

2π2ma2v22\pi^2 ma^2 v^2

B

π2ma2v2\pi ^2 ma^2 v^2

C

14ma2v2\frac{1}{4} ma^2 v^2

D

4π2ma2v24\pi ^2 ma^2 v^2

Answer

π2ma2v2\pi ^2 ma^2 v^2

Explanation

Solution

The average kinetic energy during its motion from the position of equilibrium to the end will be given by:
=0T/412mV2T/4=\frac{\int\limits_{0}^{T / 4} \frac{1}{2} m V^{2}}{T / 4}
Substitute V=aωcosωtV = a\omega \cos \omega t
K.Eavg =0T/412m(aωcosωt)2T/4K . E _{\text {avg }}=\frac{\int\limits_{0}^{ T / 4} \frac{1}{2} m ( a \omega \cos \omega t )^{2}}{ T / 4}
After solving,
KEavg=14ma2ω2K \cdot E _{ avg }=\frac{1}{4} ma ^{2} \omega^{2}
Now, substitute ω=2πv\omega=2 \pi v
KEavg=14ma2(2πv)2K \cdot E _{ avg }=\frac{1}{4} ma ^{2}(2 \pi v )^{2}
KEavg=π2ma2v2K \cdot E _{ avg }=\pi^{2} ma ^{2} v ^{2}