Solveeit Logo

Question

Question: A particle of mass 4 m which is at rest explodes into three fragments. Two of the fragments each of ...

A particle of mass 4 m which is at rest explodes into three fragments. Two of the fragments each of mass m are found to move with a speed v each in mutually perpendicular directions. The energy released in the process of explosion is

A

3/2 mv2

B

3 mv2

C

2 mv2

D

1/2 mv2

Answer

3/2 mv2

Explanation

Solution

Here momentum of third fragment is

p3 = p12+p22\sqrt { \mathrm { p } _ { 1 } ^ { 2 } + \mathrm { p } _ { 2 } ^ { 2 } }

or p3 = (mv)2+(mv)2\sqrt { ( \mathrm { mv } ) ^ { 2 } + ( \mathrm { mv } ) ^ { 2 } }

= 2mv\sqrt { 2 } \mathrm { mv }

Final K.E. of the system

= p122 m+p222 m+p322(2 m)\frac { \mathrm { p } _ { 1 } ^ { 2 } } { 2 \mathrm {~m} } + \frac { \mathrm { p } _ { 2 } ^ { 2 } } { 2 \mathrm {~m} } + \frac { \mathrm { p } _ { 3 } ^ { 2 } } { 2 ( 2 \mathrm {~m} ) }

= 32\frac { 3 } { 2 }mv2 + 32\frac { 3 } { 2 }mv2 + 32\frac { 3 } { 2 } mv

= 32\frac { 3 } { 2 }mv2

Since initial K.E. = 0 therefore energy released = 32\frac { 3 } { 2 }mv2.