Solveeit Logo

Question

Physics Question on Conservation of energy

A particle of mass 4m4 \,m explodes into three pieces of masses m,mm, m and 2m2 \,m. The equal masses move along XX-axis and YY-axis with velocities 4ms14\, ms ^{-1} and 6ms16\, ms ^{-1} respectively. The magnitude of the velocity of the heavier mass is

A

17ms1\sqrt{17}\, ms^{-1}

B

213ms1 2 \sqrt{13}\,ms^{-1}

C

13ms1 \sqrt{13}\,ms^{-1}

D

132ms1 \frac{ \sqrt{13}}{2} \,ms^{-1}

Answer

13ms1 \sqrt{13}\,ms^{-1}

Explanation

Solution

Let third mass particle (2m)(2m) moves making angle θ\theta with X-axis.
The horizontal component of velocity of 2m2\,m mass particle = u  cos  θu \; \cos \; \theta
And vertical component = u  sinθu \; \sin \theta
From conservation of linear momentum in X-direction m1u1+m2u2=m1v1+m2v2m_{1}\,u_{1} + m_{2}\,u_{2}= m_{1}\,v_{1} +m_{2}\,v_{2}
or 0=m×4+2m(ucosθ)0 = m\times4 + 2m \left( u \cos\theta\right)
or 4=2ucosθ2=ucosθ-4 = 2u \cos\theta -2 = u \cos\theta ....(i)
Again, applying law of conservation of linear momentum in Y-direction
0=m×6+2m(usinθ)0 = m \times6+2m \left(u \sin\theta\right)
62=usinθ\Rightarrow - \frac{6}{2} = u \sin\theta or 3=usinθ-3 = u \sin \theta ....(ii)
Squaring Eqs. (i) and (ii) and adding,
(4)+(9)=u2cos2θ+u2sin2θ\left(4\right) + \left(9\right) = u^{2} \cos^{2} \theta + u^{2} \sin^{2} \theta
=u2(cos2θ+sin2θ)= u^{2} \left(\cos^{2} \theta + \sin^{2} \theta\right)
or 13=u213 = u^{2}
u=13ms1\therefore u = \sqrt{13} ms^{-1}