Solveeit Logo

Question

Question: A particle of mass 200 gm moves in a potential U. Particle has energy 40 J. Time period of oscillat ...

A particle of mass 200 gm moves in a potential U. Particle has energy 40 J. Time period of oscillat particle if U is described as U = -2x for x < 0, U = 4 x 10-3.x² for x > 0

Answer

T=4+5π s (approximately 19.71 s)

Explanation

Solution

Solution:

We are given a particle of mass

m=200gm=0.2kgm=200\,\text{gm}=0.2\,\text{kg}

moving in a piecewise potential

U(x)={2xif x<0,0.004x2if x>0,U(x)=\begin{cases} -2x & \text{if } x < 0, \\ 0.004\,x^2 & \text{if } x>0, \end{cases}

with total energy E=40JE=40\,\text{J}.

Step 1. Determine turning points

  1. For x<0x<0:
    The turning point xLx_L is found from:

    E=2xL2xL=40xL=20.E=-2x_L \quad\Rightarrow\quad -2x_L=40 \quad\Rightarrow\quad x_L=-20.
  2. For x>0x>0:
    The turning point xRx_R is found from:

    0.004xR2=40xR2=400.004=10000xR=100.0.004\,x_R^2=40 \quad\Rightarrow\quad x_R^2=\frac{40}{0.004}=10000 \quad\Rightarrow\quad x_R=100.

Thus, the particle oscillates between x=20x=-20 and x=100x=100.

Step 2. Write the time period integral

The time dtdt for an infinitesimal displacement dxdx is given by:

dt=dx2m[EU(x)].dt=\frac{dx}{\sqrt{\frac{2}{m}\Bigl[E-U(x)\Bigr]}}.

Since the potential is piecewise, we break the time for a half-oscillation (t1/2t_{1/2}) into two parts:

t1/2=t1+t2,t_{1/2} = t_1 + t_2,

where

  • t1=t_1= time from x=20x=-20 to x=0x=0 (using U=2xU=-2x),
  • t2=t_2= time from x=0x=0 to x=100x=100 (using U=0.004x2U=0.004\,x^2).

Then the full period is:

T=2(t1+t2).T=2(t_1+t_2).

Calculation for t1t_1 (from x=20x=-20 to 00):

For x<0,x<0, U(x)=2xU(x)=-2x so:

EU=40(2x)=40+2x.E-U = 40-(-2x)=40+2x.

Also,

2m=20.2=10.\frac{2}{m}=\frac{2}{0.2}=10.

Thus,

t1=200dx10(40+2x).t_1 = \int_{-20}^{0}\frac{dx}{\sqrt{10\,(40+2x)}}.

Factor 40+2x=2(20+x)40+2x=2(20+x) and pull out constants:

t1=110200dx2(20+x)=120200dx20+x.t_1 = \frac{1}{\sqrt{10}}\int_{-20}^{0}\frac{dx}{\sqrt{2(20+x)}} = \frac{1}{\sqrt{20}} \int_{-20}^{0}\frac{dx}{\sqrt{20+x}}.

Let

u=20+x,du=dx.u=20+x,\quad du=dx.

When x=20x=-20, u=0u=0; when x=0x=0, u=20u=20. Then,

t1=120020duu=120[2u]020=22020=2s.t_1 = \frac{1}{\sqrt{20}} \int_{0}^{20}\frac{du}{\sqrt{u}} = \frac{1}{\sqrt{20}} \cdot \left[2\sqrt{u}\right]_0^{20} = \frac{2\sqrt{20}}{\sqrt{20}}=2\,\text{s}.

Calculation for t2t_2 (from x=0x=0 to 100100):

For x>0,x>0, U(x)=0.004x2U(x)=0.004\,x^2 so:

EU=400.004x2.E-U=40-0.004\,x^2.

Then,

t2=0100dx10(400.004x2).t_2 = \int_{0}^{100}\frac{dx}{\sqrt{10\,(40-0.004x^2)}}.

Write:

t2=1100100dx400.004x2.t_2 = \frac{1}{\sqrt{10}}\int_{0}^{100}\frac{dx}{\sqrt{40-0.004x^2}}.

Factor 40 from the square root:

400.004x2=4010.00440x2.\sqrt{40-0.004x^2}=\sqrt{40}\sqrt{1-\frac{0.004}{40}x^2}.

Note that

0.00440=0.0001=110000,\frac{0.004}{40}=0.0001=\frac{1}{10000},

so,

400.004x2=401x210000.\sqrt{40-0.004x^2}=\sqrt{40}\sqrt{1-\frac{x^2}{10000}}.

Then,

t2=110400100dx1x210000=14000100dx1x210000.t_2 = \frac{1}{\sqrt{10}\sqrt{40}}\int_{0}^{100}\frac{dx}{\sqrt{1-\frac{x^2}{10000}}} = \frac{1}{\sqrt{400}}\int_{0}^{100}\frac{dx}{\sqrt{1-\frac{x^2}{10000}}}.

Since 400=20\sqrt{400}=20,

t2=1200100dx1x210000.t_2 = \frac{1}{20}\int_{0}^{100}\frac{dx}{\sqrt{1-\frac{x^2}{10000}}}.

Now use the substitution:

x100=sinθ,dx=100cosθdθ.\frac{x}{100}=\sin\theta,\quad dx=100\cos\theta\,d\theta.

When x=0x=0, θ=0\theta=0; when x=100x=100, θ=π2\theta=\frac{\pi}{2}. Also,

1x210000=1sin2θ=cosθ.\sqrt{1-\frac{x^2}{10000}} = \sqrt{1-\sin^2\theta} = \cos\theta.

Thus,

t2=1200π2100cosθdθcosθ=100200π2dθ=5(π2)=5π2s.t_2 = \frac{1}{20}\int_{0}^{\frac{\pi}{2}}\frac{100\cos\theta\,d\theta}{\cos\theta} = \frac{100}{20}\int_{0}^{\frac{\pi}{2}}d\theta = 5\left(\frac{\pi}{2}\right)=\frac{5\pi}{2}\,\text{s}.

Step 3. Calculate the total period

The half period is:

t1/2=t1+t2=2+5π2.t_{1/2}=t_1+t_2=2+\frac{5\pi}{2}.

Thus, the full period is:

T=2(t1+t2)=2(2+5π2)=4+5πs.T=2\,(t_1+t_2)=2\left(2+\frac{5\pi}{2}\right)=4+5\pi\,\text{s}.

Final Answer:

T=4+5πs(approximately 19.71 s)\boxed{T=4+5\pi\,\text{s} \quad\text{(approximately 19.71 s)}}