Solveeit Logo

Question

Physics Question on Electric charges and fields

A particle of mass 1gm1 \, gm and charge 1μC1 \, \mu C is held at rest on a frictionless horizontal surface at distance 1m1\,m from the fixed charge 2mC2 \, mC. If the particle is released, it will be repelled. The speed of the particle when it is at a distance of 10m10\,m from the fixed charge

A

60ms160 \, ms^{-1}

B

100ms1100 \, ms^{-1}

C

90ms190 \, ms^{-1}

D

180ms1180 \, ms^{-1}

Answer

180ms1180 \, ms^{-1}

Explanation

Solution

Fixed charge =2mC=2×103C=2 \,mC =2 \times 10^{-3} C Mass of particle =1g=1×103kg=1 \,g =1 \times 10^{-3} kg Charge on particle =1μC=1×106C=1 \,\mu C =1 \times 10^{-6} C Distance between charges =1m=1 \,m Applying conservation of energy gives Ui+Ki=Uf+KfU_{i}+K_{i} =U_{f}+K_{f} Kq1×q2r1+12mv2\frac{K q_{1} \times q_{2}}{r_{1}}+\frac{1}{2} m v^{2} =kq1q2r2+12mv2=\frac{k q_{1} q_{2}}{r_{2}}+\frac{1}{2} m v^{2} Kq1q2r1=Kq1q2r2+12mv2 \frac{K q_{1} q_{2}}{r_{1}}=\frac{K q_{1} q_{2}}{r_{2}}+\frac{1}{2} m v^{2} 12mv2=Kq1q2[1r11r2]\therefore \frac{1}{2} m v^{2}=K q_{1} q_{2}\left[\frac{1}{r_{1}}-\frac{1}{r_{2}}\right] Kq1q2[r2r1r1r2]\Rightarrow K q_{1} q_{2} \left[\frac{r_{2}-r_{1}}{r_{1} r_{2}}\right] v2=2Kq1q2(r2r1)mr1r2\Rightarrow v^{2}=\frac{2 K q_{1} q_{2}\left(r_{2}-r_{1}\right)}{m r_{1} r_{2}} v2=2×9×109×106×2×103×(101)103×1×10\therefore v^{2}=\frac{2 \times 9 \times 10^{9} \times 10^{-6} \times 2 \times 10^{-3} \times(10-1)}{10^{-3} \times 1 \times 10} v=180ms1v=180\, ms ^{-1}