Solveeit Logo

Question

Question: A particle of mass 1 g moving with a velocity \({\overrightarrow{v}}_{1} = 3\widehat{i} - 2\widehat{...

A particle of mass 1 g moving with a velocity v1=3i^2j^ms1{\overrightarrow{v}}_{1} = 3\widehat{i} - 2\widehat{j}ms^{- 1}experiences a perfectly elastic collision with another particle of mass 2 g and velocity v2=4j^6k^ms1{\overrightarrow{v}}_{2} = 4\widehat{j} - 6\widehat{k}ms^{- 1}. The velocity of the particle is:

A

2.3ms12.3ms^{- 1}

B

4.6ms14.6ms^{- 1}

C

9.2ms19.2ms^{- 1}

D

6ms16ms^{- 1}

Answer

4.6ms14.6ms^{- 1}

Explanation

Solution

From conservation of momentum

m1v1+m2v2=(m1+m2)vm_{1}{\overrightarrow{v}}_{1} + m_{2}{\overrightarrow{v}}_{2} = (m_{1} + m_{2})\overrightarrow{v}

1×(3i^2j^)+2×(4j^6k^)=(1+2)v1 \times (3\widehat{i} - 2\widehat{j}) + 2 \times (4\widehat{j} - 6\widehat{k}) = (1 + 2)\overrightarrow{v}

3i^+6j^12k^=3v.v=i^+2j^4k^\Rightarrow 3\widehat{i} + 6\widehat{j} - 12\widehat{k} = 3\overrightarrow{v}. \Rightarrow \overrightarrow{v} = \widehat{i} + 2\widehat{j} - 4\widehat{k}

v=v=1+4+16=4.6ms1v = |\overrightarrow{v}| = \sqrt{1 + 4 + 16} = 4.6ms^{- 1}.