Solveeit Logo

Question

Physics Question on simple harmonic motion

A particle of mass 0.50kg0.50 \, \text{kg} executes simple harmonic motion under force F=50(N m1)xF = -50 \, (\text{N m}^{-1}) x. The time period of oscillation is x35s\frac{x}{35} \, \text{s}. The value of xx is \dots \dots \dots \dots. (Given π=227)\text{(Given } \pi = \frac{22}{7} \text{)}

Answer

The force is given by F=kxF = -kx, so k=50Nm1k = 50 \, \mathrm{Nm}^{-1}. The mass m=0.50kgm = 0.50 \, \mathrm{kg}. The time period for simple harmonic motion is:
T=2πmk.T = 2\pi \sqrt{\frac{m}{k}}.
Substituting k=50k = 50 and m=0.5m = 0.5:
T=2π0.550=2π0.01=2π×0.1=0.2πs.T = 2\pi \sqrt{\frac{0.5}{50}} = 2\pi \sqrt{0.01} = 2\pi \times 0.1 = 0.2\pi \, \mathrm{s}.
Given T=x35T = \frac{x}{35}, equating:
0.2π=x35.0.2\pi = \frac{x}{35}.
Substituting π=227\pi = \frac{22}{7}:
0.2×227=x35.0.2 \times \frac{22}{7} = \frac{x}{35}.
Simplifying: x=0.2×22×5=22.x = 0.2 \times 22 \times 5 = 22.

Explanation

Solution

The force is given by F=kxF = -kx, so k=50Nm1k = 50 \, \mathrm{Nm}^{-1}. The mass m=0.50kgm = 0.50 \, \mathrm{kg}. The time period for simple harmonic motion is:
T=2πmk.T = 2\pi \sqrt{\frac{m}{k}}.
Substituting k=50k = 50 and m=0.5m = 0.5:
T=2π0.550=2π0.01=2π×0.1=0.2πs.T = 2\pi \sqrt{\frac{0.5}{50}} = 2\pi \sqrt{0.01} = 2\pi \times 0.1 = 0.2\pi \, \mathrm{s}.
Given T=x35T = \frac{x}{35}, equating:
0.2π=x35.0.2\pi = \frac{x}{35}.
Substituting π=227\pi = \frac{22}{7}:
0.2×227=x35.0.2 \times \frac{22}{7} = \frac{x}{35}.
Simplifying: x=0.2×22×5=22.x = 0.2 \times 22 \times 5 = 22.