Solveeit Logo

Question

Question: A particle of mass \[0.1\text{ }kg\] is rotated at the end of a string in a vertical circle of radiu...

A particle of mass 0.1 kg0.1\text{ }kg is rotated at the end of a string in a vertical circle of radius 1.0 m1.0\text{ }m at a constant speed of 5m sec15\text{m se}{{\text{c}}^{-1}}. The tension in the string at the highest point is
(A) 0.5 N0.5\text{ N}
(B) 1.0 N1.0\text{ N}
(C) 1.5 N1.5\text{ N}
(D) 15 N15\text{ N}

Explanation

Solution

Hint At the highest point, the tension in the string and weight of the body together provides the necessary centripetal force required for rotation of the body in a circular path. Hence, T +mg = mv2r\text{T +}\,\text{mg = }\dfrac{\text{m}{{\text{v}}^{\text{2}}}}{\text{r}} is used.

Formula Used At highest point,
T +mg = mv2r\text{T +}\,\text{mg = }\dfrac{\text{m}{{\text{v}}^{\text{2}}}}{\text{r}}
or, T = mv2rmg\text{T = }\dfrac{\text{m}{{\text{v}}^{2}}}{\text{r}}-\text{mg}

Complete Step by Step Solution
Given:
m = 0.1 kg r = 1m v = 5m/sec   \begin{aligned} & \text{m = 0}\text{.1 kg} \\\ & \text{r = 1m} \\\ & \text{v = }{5\text{m}}/{\text{sec}}\; \\\ \end{aligned}
As the body is rotated at the end of the string in a vertical circle,
At the highest point, the tension in the string and the weight of the body together provides the necessary centripetal force.
Therefore,
T +mg = mv2r T = mv2rmg =0.1×5×510.1×10 =2.51 T = 1.5 N \begin{aligned} & \text{T +}\,\text{mg = }\dfrac{\text{m}{{\text{v}}^{\text{2}}}}{\text{r}} \\\ & \text{T = }\dfrac{\text{m}{{\text{v}}^{2}}}{\text{r}}-\text{mg} \\\ & =\dfrac{0.1\times 5\times 5}{1}-0.1\times 10 \\\ & =2.5-1 \\\ & \text{T = 1}\text{.5 N} \\\ \end{aligned}

Tension in the string at the highest point is 1.5 N (option C)

Note: If the body is at lowest point, then a part of tension T1{{\text{T}}_{1}} balances the weight of the body and the remaining part provides the necessary centripetal force. Hence, formula used will beT1mg = mv2r{{\text{T}}_{1}}-\text{mg = }\dfrac{\text{m}{{\text{v}}^{2}}}{\text{r}}
The conditions when the body is at highest point and at the lowest point must be understood properly so as to solve the problem correctly.