Solveeit Logo

Question

Physics Question on Friction

A particle of charge q-q and mass mm moves in a circle of radius rr around an infinitely long line charge of linear density +λ+\lambda. Then the time period will be given as:

A

T=2πrm2kqT = 2\pi r \sqrt{\frac{m}{2kq}}

B

T2=4πmr32kqT^2 = \frac{4\pi m r^3}{2kq}

C

T=12πrm2kqT = \frac{1}{2\pi r} \sqrt{\frac{m}{2kq}}

D

T=2kqmT = \frac{2kq}{m}

Answer

T=2πrm2kqT = 2\pi r \sqrt{\frac{m}{2kq}}

Explanation

Solution

The electric field EE due to an infinitely long line charge with linear charge density +λ+\lambda at a distance rr from the line charge is given by:

E=λ2πϵ0r,E = \frac{\lambda}{2 \pi \epsilon_0 r},

where ϵ0\epsilon_0 is the permittivity of free space.

Force on the Charged Particle: The force FF acting on the particle due to the electric field is:

F=qE=q(λ2πϵ0r).F = -qE = -q \left( \frac{\lambda}{2 \pi \epsilon_0 r} \right).

Since the particle moves in a circular path, this force provides the centripetal force necessary for circular motion:

F=mv2r.F = \frac{mv^2}{r}.

Equating the Forces: Setting the electric force equal to the centripetal force:

q(λ2πϵ0r)=mv2r.-q \left( \frac{\lambda}{2 \pi \epsilon_0 r} \right) = \frac{mv^2}{r}.

Rearranging gives:

mv2=qλ2πϵ0.mv^2 = \frac{q \lambda}{2 \pi \epsilon_0}.

Finding the Time Period: The velocity vv can also be expressed in terms of the radius and the time period TT:

v=2πrT.v = \frac{2 \pi r}{T}.

Substituting this expression for vv into the equation:

m(2πrT)2=qλ2πϵ0.m \left( \frac{2 \pi r}{T} \right)^2 = \frac{q \lambda}{2 \pi \epsilon_0}.

Simplifying gives:

m×4π2r2T2=qλ2πϵ0.m \times \frac{4 \pi^2 r^2}{T^2} = \frac{q \lambda}{2 \pi \epsilon_0}.

Rearranging for T2T^2:

T2=4πmr2ϵ0qλ.T^2 = \frac{4 \pi m r^2 \epsilon_0}{q \lambda}.

Final Expression: To match the answer choices, if we express k=14πϵ0k = \frac{1}{4 \pi \epsilon_0}:

T2=4πmr22kq.T^2 = \frac{4 \pi m r^2}{2 k q}.

Thus, the time period is:

T=2πrm2kq.T = 2 \pi r \sqrt{\frac{m}{2 k q}}.