Solveeit Logo

Question

Question: A particle of charge \(1\mu C\) is at rest in a magnetic field \(\overset{\to }{\mathop{B}}\,=-2\hat...

A particle of charge 1μC1\mu C is at rest in a magnetic field B=2k^ tesla\overset{\to }{\mathop{B}}\,=-2\hat{k}\text{ }tesla. Magnetic Lorentz force on the charge particle with respect to an observer moving with velocity v=5i^ms1\overset{\to }{\mathop{v}}\,=-5\hat{i}m{{s}^{-1}} will be

A) Zero

B)105j^N-{{10}^{5}}\hat{j}N

C) 106j^N-{{10}^{6}}\hat{j}N

D) 105j^N{{10}^{5}}\hat{j}N

Explanation

Solution

We know that the Lorentz force on a charged particle is given by: Fl=q(v×B){{F}_{l}}=q\left( v\times B \right). Apply the formula for q=1μCq=1\mu C, B=2k^ tesla\overset{\to }{\mathop{B}}\,=-2\hat{k}\text{ }tesla and v=+5i^ms1\overset{\to }{\mathop{v}}\,=+5\hat{i}m{{s}^{-1}} to find the Lorentz force on the charged particle.

Complete step by step answer:

We have the following data as:

q=1μCq=1\mu C

B=2k^ tesla\overset{\to }{\mathop{B}}\,=-2\hat{k}\text{ }tesla

Velocity of observer =5i^ms1=-5\hat{i}m{{s}^{-1}}

Velocity of charged particle (v{\mathop{v}})= 0(5i^ms1)0-(-5\hat{i}m{{s}^{-1}}) =(+5i^ms1)(+5\hat{i}m{{s}^{-1}})

So, by applying the formula for Lorentz Force: Fl=q(v×B){{F}_{l}}=q\left( v\times B \right)

We get:

Fl=1μC(+5i^ms1×2k^ tesla){{F}_{l}}=1\mu C\left( +5\hat{i}m{{s}^{-1}}\times -2\hat{k}\text{ }tesla \right)

=106×10(i^×k^)={{10}^{-6}}\times -10\left( \hat{i}\times \hat{k} \right)

=105(i^×k^)......(1)={-{10}^{-5}}\left( \hat{i}\times \hat{k} \right)......(1)

As we know that: (i^×k^)=j^\left( \hat{i}\times \hat{k} \right)=-\hat{j}

So, we get:

Fl=105j^N{{F}_{l}}={{10}^{-5}}\hat{j}N

So, the correct answer is “Option D”.

Note:

In physics (specifically in electromagnetism) the Lorentz force (or electromagnetic force) is the combination of the electric and magnetic force on a point charge due to electromagnetic fields. A particle of charge q moving with a velocity v in an electric field E and a magnetic field B experiences a force.

The Lorentz Force on an electric charge occurs when the charge moves through a magnetic field. This force is perpendicular to the direction of the charge and also perpendicular to the direction of the magnetic field. It is a vector combination of the two forces.