Solveeit Logo

Question

Question: A particle moving with uniform acceleration has average velocities \(v_{1},v_{2}andv_{3}\) over the ...

A particle moving with uniform acceleration has average velocities v1,v2andv3v_{1},v_{2}andv_{3} over the successive intervals of time t1,t2andt3t_{1},t_{2}andt_{3} respectively. The value of (v1v2)(v2v3)\frac{(v_{1} - v_{2})}{(v_{2} - v_{3})}will be

A

t1t2t2t3\frac{t_{1} - t_{2}}{t_{2} - t_{3}}

B

t1t2t2+t3\frac{t_{1} - t_{2}}{t_{2} + t_{3}}

C

t1+t2t2t3\frac{t_{1} + t_{2}}{t_{2} - t_{3}}

D

t1+t2t2+t3\frac{t_{1} + t_{2}}{t_{2} + t_{3}}

Answer

t1+t2t2+t3\frac{t_{1} + t_{2}}{t_{2} + t_{3}}

Explanation

Solution

Let u be initial velocity and a be uniform accelerations.

Average velocities in the intervals from 0 to t1,t1t_{1},t_{1}to t2t_{2}and t2t_{2}to t3t_{3}are

v1=u+u+at12=u+a2t1v_{1} = \frac{u + u + at_{1}}{2} = u + \frac{a}{2}t_{1} …….. (i)

v2=u+at1+u+a(t1+t2)2=u+at1+a2t2v_{2} = \frac{u + at_{1} + u + a(t_{1} + t_{2})}{2} = u + at_{1} + \frac{a}{2}t_{2} ….. (ii)v3=u+a(t1+t2)+u+a(t1+t2+t3)2v_{3} = \frac{u + a(t_{1} + t_{2}) + u + a(t_{1} + t_{2} + t_{3})}{2}

=u+at1+at2+a2t3= u + at_{1} + at_{2} + \frac{a}{2}t_{3} ……….(iii)

Subtract (i) Form (ii), we get

v2v1=a2(t1+t2)v_{2} - v_{1} = \frac{a}{2}\left( t_{1} + t_{2} \right) …….. (iv)

Subtract (ii) from (iii), we get

v3v2=a2(t2+t3)v_{3} - v_{2} = \frac{a}{2}\left( t_{2} + t_{3} \right) ……… (v)

Divide (iv) by (v) , we get

v2v1v3v2=(t1+t2)(t2+t3)orv1v2v2v3=(t1+t2)(t2+t3)\frac{v_{2} - v_{1}}{v_{3} - v_{2}} = \frac{(t_{1} + t_{2})}{(t_{2} + t_{3})}or\frac{v_{1} - v_{2}}{v_{2} - v_{3}} = \frac{(t_{1} + t_{2})}{(t_{2} + t_{3})}