Solveeit Logo

Question

Physics Question on physical world

A particle moving with an initial velocity ums1u\, ms^{-1} is retarded by a force at the rate of a=kva = - k \sqrt v . where KK is a positive constant and vv is the instantaneous velocity. The particle comes to rest in a time given by

A

2uk\frac{2\sqrt u}{k}

B

kuk\sqrt u

C

uk\frac{\sqrt u}{k}

D

u2k\frac{\sqrt u}{2k}

Answer

2uk\frac{2\sqrt u}{k}

Explanation

Solution

Given, a=kva = -k \sqrt{v}
or a=dvdt=kv[dxdt=v]a = \frac{dv}{dt} = -k \sqrt{v} \,\,[\because \frac{dx}{dt} = v]
or dv=kvdt dv = -k \sqrt{v} dt
or dvv=kdt\frac{dv}{\sqrt{v}} = - kdt
Integration will yield
uvdvv=0tkdt\int\limits_{u}^{v} \frac{dv}{\sqrt{v}} = \int\limits_{0}^{t} -kdt
[2v]uv=k[t]0t\left[2\sqrt{v}\right]_{u}^{v} = -k\left[t\right]_{0}^{t}
2(vu)=kt2\left(\sqrt{v} -\sqrt{u}\right) = -kt
\therefore Particle comes to rest, so final velocity v=0v =0
and 2u=kt-2\sqrt{u} = -kt
t=2uk\Rightarrow t = \frac{2\sqrt{u}}{k}