Solveeit Logo

Question

Physics Question on projectile motion

AA particle moving in a circle of radius RR with a uniform speed takes a time TT to complete one revolution. If this particle were projected with the same speed at an angle ' θ\theta ' to the horizontal, the maximum height attained by it equals 4R4 R. The angle of projection, θ\theta, is then given by :

A

θ=cos1(gT2π2R)1/2\theta=\cos ^{-1}\left(\frac{ gT ^{2}}{\pi^{2} R }\right)^{1 / 2}

B

θ=cos1(π2RgT2)1/2\theta=\cos ^{-1}\left(\frac{\pi^{2} R}{g T^{2}}\right)^{1 / 2}

C

θ=sin1(π2RgT2)1/2\theta=\sin ^{-1}\left(\frac{\pi^{2} R}{ g T ^{2}}\right)^{1 / 2}

D

θ=sin1(2gT2π2R)1/2\theta=\sin ^{-1}\left(\frac{2 gT ^{2}}{\pi^{2} R }\right)^{1 / 2}

Answer

θ=sin1(2gT2π2R)1/2\theta=\sin ^{-1}\left(\frac{2 gT ^{2}}{\pi^{2} R }\right)^{1 / 2}

Explanation

Solution

Velocity of the particle v=2πRTv=\frac{2 \pi R}{T} When projected at angle θ\theta H= H= maximum height =v2sin2θ2g=4R=\frac{v^{2} \sin ^{2} \theta}{2 g}=4 R =4π2R2T2sin2θ2g=4R=\frac{4 \pi^{2} R^{2}}{T^{2}} \frac{\sin ^{2} \theta}{2 g}=4 R sin2θ=2gRT2π2R2\sin ^{2} \theta=\frac{2 g R T^{2}}{\pi^{2} R^{2}} sin2θ=2gT2π2R\sin ^{2} \theta=\frac{2 g T^{2}}{\pi^{2} R} sinθ=(2gT2π2R)1/2\sin \theta=\left(\frac{2 g T^{2}}{\pi^{2} R}\right)^{1 / 2} θ=sin1(2gT2π2R)1/2\theta=\sin ^{-1}\left(\frac{2 g T^{2}}{\pi^{2} R}\right)^{1 / 2}