Solveeit Logo

Question

Physics Question on Motion in a straight line

A particle moving along xx -axis has acceleration ff, at time tt, given by f=f0(1tT)f = f _{0}\left(1-\frac{ t }{ T }\right), where f0f _{0} and TT are constants. The particle at t=0t =0 has zero velocity. In the time interval between t=0t =0 and the instant when f=0f =0, the particle's velocity (vx)\left( v _{ x }\right) is:

A

12f0T2\frac{1}{2}f_0 T^2

B

f0T2f_0 T^2

C

12f0T\frac{1}{2}f_0 T

D

f0Tf_0 T

Answer

12f0T\frac{1}{2}f_0 T

Explanation

Solution

Acceleration dvdt=f=f0(1tT)\frac{ dv }{ dt }= f = f _{0}\left(1-\frac{ t }{ T }\right)
0vdv=f00T(1tT)dt\Rightarrow \displaystyle\int_{0}^{ v } d v = f _{0} \displaystyle\int_{0}^{ T }\left(1-\frac{ t }{ T }\right) dt
v=f0(tt22T)0T=f0(TT22T)=12f0T\Rightarrow v = f _{0}\left( t -\frac{ t ^{2}}{2 T }\right)_{0}^{ T }= f _{0}\left( T -\frac{ T ^{2}}{2 T }\right)=\frac{1}{2} \,f _{0}\, T