Solveeit Logo

Question

Physics Question on Oscillations

A particle moves with simple harmonic motion in a straight line. In first τ\tau sec, after starting from rest it travels a distance a and in next τ\tau sec, it travels 2a2a, in same direction, then

A

amplitude of motion is 3a

B

time period of oscillations is 8τ8\,\tau

C

amplitude of motion is 4a4a

D

time period of oscillations is 6τ6\tau

Answer

time period of oscillations is 6τ6\tau

Explanation

Solution

As it starts from rest, we have
x=Acosωtx=A \cos \omega t At t=0,x=At=0, x=A
when t=τ,x=Aat=\tau, x=A-a
when t=2τ,x=A3at=2 \tau, x=A-3 a
Aa=Acosωτ\Rightarrow A -a=A \cos \omega\, \tau
A3a=Acos2ωτA -3 a=A \cos 2 \omega \tau
As cos2ωτ=2cos2ωτ1\cos 2 \omega \tau=2 \cos ^{2} \omega \tau-1
A3aA=2(AaA)21\Rightarrow \frac{A-3 a}{A}=2\left(\frac{A-a}{A}\right)^{2}-1
A3aA=2A2+2a24AaA2A2\frac{A-3 a}{A}=\frac{2 A^{2}+2 a^{2}-4 A a-A^{2}}{A^{2}}
A23aA=A2+2a24AaA^{2}-3 a A=A^{2}+2 a^{2}-4 A a
a2=2aAa^{2}= 2aA
A=2aA= 2 a
Now, Aa=AcosωτA-a=A \cos\, \omega \,\tau
cosωτ=12\Rightarrow \cos \,\omega \tau=\frac{1}{2}
2πTτ=π3\frac{2 \pi}{T} \tau=\frac{\pi}{3}
T=6τ\Rightarrow T=6\, \tau