Solveeit Logo

Question

Question: A particle moves, such that its position vector \(\overrightarrow r (t) = \cos \omega t\widehat i + ...

A particle moves, such that its position vector r(t)=cosωti^+sinωtj^\overrightarrow r (t) = \cos \omega t\widehat i + \sin \omega t\widehat j where ω\omega is a constant and t is time. Then which of the following statements is true for the vector v(t)\overrightarrow v (t) acceleration a(t)\overrightarrow a (t) of the particle
(A) v\overrightarrow v is perpendicular to r\overrightarrow r and a\overrightarrow a is directed away from the origin
(B) v\overrightarrow v and a\overrightarrow a both are parallel to r\overrightarrow r
(C) v\overrightarrow v and a\overrightarrow a both are perpendicular to r\overrightarrow r
(D) v\overrightarrow v is perpendicular to r\overrightarrow r and a\overrightarrow a is directed towards the origin

Explanation

Solution

In order to solve the above problem first we have to see what is given in question. Here position vector r(t)\overrightarrow r (t) is given.On differentiating r(t)\overrightarrow r (t) with respect to time, we get v(t)\overrightarrow v (t) velocity vector.
After then on differentiating v(t)\overrightarrow v (t) with respect to time, we will get an acceleration vector a(t)\overrightarrow a (t).After calculating v(t)\overrightarrow v (t) and a(t)\overrightarrow a (t) we will check each option one by one.

Complete step by step answer:
In question given that position vector r(t)=cosωti^+sinωtj^\overrightarrow r (t) = \cos \omega t\widehat i + \sin \omega t\widehat j …..(1)
We know that velocity vector v(t)=d[r(t)]dt\overrightarrow v (t) = \dfrac{{d[\overrightarrow r (t)]}}{{dt}}
So, v(t)=d[cos(ωt)i^+sin(ωt)j^]dt\overrightarrow v (t) = \dfrac{{d[\cos (\omega t)\widehat i + \sin (\omega t)\widehat j]}}{{dt}}
v(t)=d[cos(ωt)]i^dt+d[sin(ωt)]j^dt\Rightarrow\overrightarrow v (t) = \dfrac{{d[\cos (\omega t)]\widehat i}}{{dt}} + \dfrac{{d[\sin (\omega t)]\widehat j}}{{dt}}
v(t)=ωsinωti^+ωcosωtj^\Rightarrow\overrightarrow v (t) = - \omega \sin \omega t\widehat i + \omega \cos \omega t\widehat j
v(t)=ω[cos(ωt)j^sin(ωt)i^]\Rightarrow\overrightarrow v (t) = \omega [\cos (\omega t)\widehat j - \sin (\omega t)\widehat i] …..(2)
We also know that
Acceleration vector a(t)=d[v(t)]dt\overrightarrow a (t) = \dfrac{{d[\overrightarrow v (t)]}}{{dt}}
From equation 1
a(t)=d[ω(cosωtj^sinωti^)]dt\overrightarrow a (t) = \dfrac{{d[\omega (\cos \omega t\widehat j - \sin \omega t\widehat i)]}}{{dt}}
a(t)=ω[d(cosωt)dtj^d(sinωt)dti^]\Rightarrow\overrightarrow a (t) = \omega \left[ {\dfrac{{d(\cos \omega t)}}{{dt}}\widehat j - \dfrac{{d(\sin \omega t)}}{{dt}}\widehat i} \right]
a(t)=ω[ωsinωtj^ωcosωti^]\Rightarrow\overrightarrow a (t) = \omega \left[ { - \omega \sin \omega t\widehat j - \omega \cos \omega t\widehat i} \right]
a(t)=ω2(cosωti^+sinωtj^)\Rightarrow\overrightarrow a (t) = - {\omega ^2}(\cos \omega t\widehat i + \sin \omega t\widehat j) ………(3)
Now we will check each option one by one.
(A) If v\overrightarrow v and r\overrightarrow r perpendicular to each other, So, (vr)(\overrightarrow v \cdot \overrightarrow r ) Should be zero.
Let’s check vr\Rightarrow \overrightarrow v \cdot \overrightarrow r
From equation 1 and 2
[ω(cosωtj^sinωti^)](cos2ωti^+sinωtj^)\Rightarrow \left[ {\omega (\cos \omega t\widehat j - \sin \omega t\widehat i)} \right] \cdot ({\cos ^2}\omega t\widehat i + \sin \omega t\widehat j)
vr=ω(cosωtsinωtsinωtcosωt)\Rightarrow\overrightarrow v \cdot \overrightarrow r = \omega (\cos \omega t\sin \omega t - \sin \omega t\cos \omega t)
vr=0\Rightarrow \overrightarrow v \cdot \overrightarrow r = 0 …..(4)
And also given in statement a\overrightarrow a is directed away from origin. Let’s check.
So, from equation 1 and 3
a=ω2r\overrightarrow a = - {\omega ^2}\overrightarrow r
a=ω2(r)\Rightarrow\overrightarrow a = {\omega ^2}( - \overrightarrow r ) …..(5)
This ve - ve sign represents that a\overrightarrow a is directed towards the origin.
Hence, A is not true.
(B) Now we will check option B
In this statement given that v\overrightarrow v and a\overrightarrow a both are parallel to r\overrightarrow r .
But from equation 4 it is clear that v\overrightarrow v and r\overrightarrow r perpendicular to each other.
Hence, option B is also not true.
(C) In this statement given that v\overrightarrow v and a\overrightarrow a both are perpendicular to r\overrightarrow r . From equation 4 it is clear that v\overrightarrow v and r\overrightarrow r are perpendicular to each other.
Now we will check that ar\overrightarrow a \cdot \overrightarrow r will be zero or not.
So, from equation 1 and 3
\overrightarrow a \cdot \overrightarrow r = \left\\{ { - {\omega ^2}\left[ {\cos \omega t\widehat i + \sin \omega t\widehat j} \right]} \right\\} \cdot \left( {{{\cos }^2}\omega t\widehat i + \sin \omega t\widehat j} \right)
ar=ω2(cos2ωt+sin2ωt)\Rightarrow\overrightarrow a \cdot \overrightarrow r = - {\omega ^2}({\cos ^2}\omega t + {\sin ^2}\omega t)
ar=ω2(1)\Rightarrow\overrightarrow a \cdot \overrightarrow r = - {\omega ^2}(1)
ar=ω2\Rightarrow\overrightarrow a \cdot \overrightarrow r = - {\omega ^2}
ar0\therefore\overrightarrow a \cdot \overrightarrow r \ne 0
So, a\overrightarrow a and r\overrightarrow r are not perpendicular to each other.
Hence, option C is also not true.
(D) From equation 4 and 5, it is clear that v\overrightarrow v and r\overrightarrow r are perpendicular to each other and a\overrightarrow a is directed towards the origin.

Hence, option D is true.So, option D is the correct answer.

Note: Many time students may get confused between perpendicular and parallel concepts of 2 vectors. If 2 vectors are parallel to each other then their cross product will be zero.
A×B=0\overrightarrow A \times \overrightarrow B = 0
If 2 vectors are perpendicular to each other then their dot product is zero
AB=0\overrightarrow A \cdot \overrightarrow B = 0