Solveeit Logo

Question

Question: A particle moves rectilinearly. Its displacement x at time t is given by \(x^{2} = at^{2} + b\)where...

A particle moves rectilinearly. Its displacement x at time t is given by x2=at2+bx^{2} = at^{2} + bwhere a and b are constants. Its acceleration at time t is proportional to

A

1x3\frac{1}{x^{3}}

B

1x1x2\frac{1}{x} - \frac{1}{x^{2}}

C

tx2- \frac{t}{x^{2}}

D

1xt2x3\frac{1}{x} - \frac{t^{2}}{x^{3}}

Answer

1x3\frac{1}{x^{3}}

Explanation

Solution

Given : x2=at2+bx^{2} = at^{2} + b …… (i)

Differentiating w.r.t. t on both sides, we get2xdxdt=2at2x\frac{dx}{dt} = 2at

xv=atxv = at (v=dxdt)\left( \because v = \frac{dx}{dt} \right)

Again differentiating w.r.t. t on both sides, we get

xdvdt+vdxdt=ax \frac { d v } { d t } + v \frac { d x } { d t } = a \quad or xdvdt=av2\quad x \frac { d v } { d t } = a - v ^ { 2 } dvdt=av2x=a(atx)2x=aa2t2x2x=a(x2at2)x3\frac{dv}{dt} = \frac{a - v^{2}}{x} = \frac{a - \left( \frac{at}{x} \right)^{2}}{x} = \frac{a - \frac{a^{2}t^{2}}{x^{2}}}{x} = \frac{a(x^{2} - at^{2})}{x^{3}}

dvdt=abx3\frac{dv}{dt} = \frac{ab}{x^{3}} (Using (i))

Or Accelerations 1x3\propto \frac{1}{x^{3}}