Solveeit Logo

Question

Physics Question on Motion in a straight line

A particle moves rectilinearly. Its displacement xx at time tt is given by x2=at2+bx^2 = at^2 + b where aa and bb are constants. Its acceleration at time tt is proportional to

A

1x3\frac{1}{x^{3}}

B

1x1x2\frac{1}{x}-\frac{1}{x^{2}}

C

tx2-\frac{t}{x^{2}}

D

1xt2x3\frac{1}{x}-\frac{t^{2}}{x^{3}}

Answer

1x3\frac{1}{x^{3}}

Explanation

Solution

Given : x2=at2+b(i)x^{2}=at^{2}+b\quad\ldots\left(i\right) Differentiating w.r.t. tt on both sides, we get 2xdxdt=2at2x \frac{dx}{dt}=2at ; xv=at(v=dxdt)xv=at\quad\left(\because v=\frac{dx}{dt}\right) Again differentiating w.r.t. tt on both sides, we get xdvdt+vdxdt=ax \frac{dv}{dt}+v \frac{dx}{dt}=a or xdvdt=av2x \frac{dv}{dt}=a-v^{2} dvdt=av2x=a(atx)2x\frac{dv}{dt}=\frac{a-v^{2}}{x}=\frac{a-\left(\frac{at}{x}\right)^{2}}{x} =aa2t2x2x=a(x2at2)x3=\frac{a-\frac{a^{2}t^{2}}{x^{2}}}{x}=\frac{a\left(x^{2}-at^{2}\right)}{x^{3}} dvdt=abx3\frac{dv}{dt}=\frac{ab}{x^{3}} or Acceleration 1x3\propto \frac{1}{x^{3}}\quad (Using (i)(i))