Solveeit Logo

Question

Question: A particle moves on a rough horizontal ground with some initial velocity say v<sub>0</sub>. If 3/4<s...

A particle moves on a rough horizontal ground with some initial velocity say v0. If 3/4th of its kinetic energy is lost in friction in time t0. Then coefficient of friction between the particle and the ground is-

A

v02gt0\frac { \mathrm { v } _ { 0 } } { 2 \mathrm { gt } _ { 0 } }

B

v04gt0\frac { \mathrm { v } _ { 0 } } { 4 \mathrm { gt } _ { 0 } }

C

3v04gt0\frac { 3 \mathrm { v } _ { 0 } } { 4 \mathrm { gt } _ { 0 } }

D

v0gt0\frac { \mathrm { v } _ { 0 } } { \mathrm { gt } _ { 0 } }

Answer

v02gt0\frac { \mathrm { v } _ { 0 } } { 2 \mathrm { gt } _ { 0 } }

Explanation

Solution

34\frac { 3 } { 4 } th energy is lost i.e. 14\frac { 1 } { 4 } KE is left. Hence new velocity becomes v02\frac { \mathrm { v } _ { 0 } } { 2 } under the retardation µg in time t0,

v02\frac { \mathrm { v } _ { 0 } } { 2 } = v0 – µg t0 Ž µ = v02gt0\frac { \mathrm { v } _ { 0 } } { 2 \mathrm { gt } _ { 0 } }