Solveeit Logo

Question

Question: A particle moves in x-y plane. The position vector of particle at any time t is =\(\overset{\rightar...

A particle moves in x-y plane. The position vector of particle at any time t is =r\overset{\rightarrow}{r}{(2t)i^\widehat{i}+ (2t2)j^\widehat{j}} m. The rate of change of q at time t = 2 s. (where q is the angle which its velocity vector makes with positive x-axis) is :

A

217\frac{2}{17}rad/s

B

114\frac{1}{14}rad/s

C

47\frac{4}{7}rad/s

D

65\frac{6}{5}rad/s

Answer

217\frac{2}{17}rad/s

Explanation

Solution

x = 2t ̃ vx =dxdt\frac{dx}{dt}= 2

y = 2t2 ̃ vy =dydt\frac{dy}{dt}= 4t

\ tan q =vyvx\frac{v_{y}}{v_{x}}=4t2\frac{4t}{2}= 2t

Differentiating with respect to time we get,

(sec2 q)dθdt\frac{d\theta}{dt}= 2

or (1 + tan2 q)dθdt\frac{d\theta}{dt}= 2

or (1 + 4t2)dθdt\frac{d\theta}{dt}= 2

or dθdt\frac{d\theta}{dt}=21+4t2\frac{2}{1 + 4t^{2}}

dθdt\frac{d\theta}{dt}at t = 2 s is dθdt\frac{d\theta}{dt}=21+4(2)2\frac{2}{1 + 4(2)^{2}}=217\frac{2}{17}rad/s