Solveeit Logo

Question

Question: A particle moves in the xy-plane under the action of a force **F** such that the components of its l...

A particle moves in the xy-plane under the action of a force F such that the components of its linear momentum p at any time t arepx=2costp_{x} = 2\cos t, py=2sintp_{y} = 2\sin t. The angle between F and p at time t is

A

90°

B

C

180°

D

30°

Answer

90°

Explanation

Solution

Given that

p=pxi^+pyj^=2cost6mui^+2sint6muj^\overrightarrow{p} = p_{x}\widehat{i} + p_{y}\widehat{j} = 2\cos t\mspace{6mu}\widehat{i} + 2\sin t\mspace{6mu}\widehat{j}

F=dpdt=2sint6mui^+2cost6muj^\overrightarrow{F} = \frac{d\overrightarrow{p}}{dt} = - 2\sin t\mspace{6mu}\widehat{i} + 2\cos t\mspace{6mu}\widehat{j}

Now, F.p=0\overrightarrow{F}.\overrightarrow{p} = 0 i.e. angle between F6muand p6mu\overrightarrow{F}\mspace{6mu}\text{and }\overrightarrow{p}\mspace{6mu}is 90°.