Solveeit Logo

Question

Physics Question on Newtons Laws of Motion

A particle moves in the xyxy - plane under the action of a force F\vec{ F } such that the components of its linear momentum P\vec{ P } at any time tt are Px=2cost,Py=2sintP_{x}=2 \cos t, P_{y}=2 \sin t. The angle between FF and pp at time tt is

A

90 90^{\circ }

B

00^{\circ}

C

180180^{\circ}

D

3030^{\circ}

Answer

90 90^{\circ }

Explanation

Solution

Resultant momentum p=pxi^+pyj^p=p_{x} \hat{i}+p_{y} \hat{j} Given px=2cost,py=2sintp_{x}=2 \cos t, p_{y}=2 \sin t \therefore momentum p=2costi^+2sinrj^\vec{p}=2 \cos t \hat{i}+2 \sin r \hat{j} \ldots (i) \because Force = Rate of change of momentum =dpdt=\frac{d \vec{p}}{d t} F=2sinti^+2costj^\therefore \vec{F}=-2 \sin t \hat{i}+2 \cos t \hat{j} \ldots(ii) By cosθ=FpFp\cos \theta=\frac{\vec{F} \cdot \vec{p}}{|\vec{F}| \cdot|\vec{p}|} cosθ=(2sinti^+2costj^)(2costi^+2sintj^)4sin2t+4cos2t4cos2t+4sin2t\cos \theta=\frac{(2-\sin t \hat{i}+2 \cos t \hat{j}) \cdot(2 \cos t \hat{i}+2 \sin t \hat{j})}{\sqrt{4 \sin ^{2} t+4 \cos ^{2} t} \sqrt{4 \cos ^{2} t+4 \sin ^{2} t}} or cosθ=0\cos \theta=0 θ=90\Rightarrow \theta=90^{\circ}