Solveeit Logo

Question

Question: A particle moves in the xy plane as v = a\(\widehat{i}\) + bx\(\widehat{j}\) where \(\widehat{i}\) a...

A particle moves in the xy plane as v = ai^\widehat{i} + bxj^\widehat{j} where i^\widehat{i} and j^\widehat{j} are the unit vectors along x and y axis. The particle starts from origin at t = 0. Find the radius of curvature of particle as a function of x.

A

a2+b2x2ba\frac{a^{2} + b^{2}x^{2}}{ba}

B

ab[1+(bxa)2]3/2\frac{a}{b}\left\lbrack 1 + \left( \frac{bx}{a} \right)^{2} \right\rbrack^{3/2}

C

ba[1+(axb)2]3/2\frac{b}{a}\left\lbrack 1 + \left( \frac{ax}{b} \right)^{2} \right\rbrack^{3/2}

D

None of these

Answer

ab[1+(bxa)2]3/2\frac{a}{b}\left\lbrack 1 + \left( \frac{bx}{a} \right)^{2} \right\rbrack^{3/2}

Explanation

Solution

dvdt\frac{dv}{dt} = a or x = at

dydt=bat\frac{dy}{dt} = bat or y = bat22\frac{bat^{2}}{2} or y = bx22a\frac{bx^{2}}{2a}

dydx=bax\frac{dy}{dx} = \frac{b}{a}x and d2ydx2=ba\frac{d^{2}y}{dx^{2}} = \frac{b}{a}

R = [1+(dydx)2]3/2d2ydx2=[1+(bax)2]3/2ba\frac{\left\lbrack 1 + \left( \frac{dy}{dx} \right)^{2} \right\rbrack^{3/2}}{\frac{d^{2}y}{dx^{2}}} = \frac{\left\lbrack 1 + \left( \frac{b}{a}x \right)^{2} \right\rbrack^{3/2}}{\frac{b}{a}}=

ab[1+(bxa)2]3/2\frac{a}{b}\left\lbrack 1 + \left( \frac{bx}{a} \right)^{2} \right\rbrack^{3/2}