Solveeit Logo

Question

Question: A particle moves in the x-y plane with the velocity $\vec{v} = a\hat{i} + bt\hat{j}$. At the instant...

A particle moves in the x-y plane with the velocity v=ai^+btj^\vec{v} = a\hat{i} + bt\hat{j}. At the instant t=a3/bt = a\sqrt{3}/b the magnitude of tangential, normal and total acceleration are ______, ______, & ______.

Answer

The magnitude of tangential, normal and total acceleration are b32\frac{b\sqrt{3}}{2}, b2\frac{b}{2}, & bb.

Explanation

Solution

The velocity of the particle is given by v=ai^+btj^\vec{v} = a\hat{i} + bt\hat{j}. The acceleration vector is the time derivative of velocity: a=dvdt=bj^\vec{a} = \frac{d\vec{v}}{dt} = b\hat{j}. The magnitude of the total acceleration is a=02+b2=b|\vec{a}| = \sqrt{0^2 + b^2} = b.

The speed of the particle is v=v=a2+(bt)2=a2+b2t2v = |\vec{v}| = \sqrt{a^2 + (bt)^2} = \sqrt{a^2 + b^2t^2}. The tangential acceleration is the rate of change of speed: at=dvdt=ddt(a2+b2t2)1/2=b2ta2+b2t2a_t = \frac{dv}{dt} = \frac{d}{dt}(a^2 + b^2t^2)^{1/2} = \frac{b^2t}{\sqrt{a^2 + b^2t^2}}. The normal acceleration ana_n can be found using the relation a2=at2+an2a^2 = a_t^2 + a_n^2. an=a2at2=b2(b2ta2+b2t2)2=a2b2a2+b2t2=aba2+b2t2a_n = \sqrt{a^2 - a_t^2} = \sqrt{b^2 - \left(\frac{b^2t}{\sqrt{a^2 + b^2t^2}}\right)^2} = \sqrt{\frac{a^2b^2}{a^2 + b^2t^2}} = \frac{|ab|}{\sqrt{a^2 + b^2t^2}}. Assuming a>0a>0 and b>0b>0, an=aba2+b2t2a_n = \frac{ab}{\sqrt{a^2 + b^2t^2}}.

At the instant t=a3bt = \frac{a\sqrt{3}}{b}: a2+b2t2=a2+b2(a3b)2=a2+3a2=4a2a^2 + b^2t^2 = a^2 + b^2\left(\frac{a\sqrt{3}}{b}\right)^2 = a^2 + 3a^2 = 4a^2. So, a2+b2t2=4a2=2a\sqrt{a^2 + b^2t^2} = \sqrt{4a^2} = 2a (assuming a>0a>0).

Substituting this into the expressions for ata_t, ana_n, and a|\vec{a}|: Tangential acceleration: at=b2(a3/b)2a=ab32a=b32a_t = \frac{b^2(a\sqrt{3}/b)}{2a} = \frac{ab\sqrt{3}}{2a} = \frac{b\sqrt{3}}{2}. Normal acceleration: an=ab2a=b2a_n = \frac{ab}{2a} = \frac{b}{2}. Total acceleration: a=b|\vec{a}| = b.

Thus, the magnitudes of tangential, normal, and total acceleration are b32\frac{b\sqrt{3}}{2}, b2\frac{b}{2}, and bb, respectively.