Solveeit Logo

Question

Physics Question on Newton’s First Law Of Motion

A particle moves in the x-y plane under the influence of a force F\vec{F} such that its linear momentum is P(t)=i^cos(kt)j^sin(kt).\vec{P}(t) = \hat{i} \cos(kt) - \hat{j} \sin(kt). If kk is constant, the angle between F\vec{F} and P\vec{P} will be:

A

π2\frac{\pi}{2}

B

π6\frac{\pi}{6}

C

π4\frac{\pi}{4}

D

π3\frac{\pi}{3}

Answer

π2\frac{\pi}{2}

Explanation

Solution

Given:
P(t)=cos(kt)i^sin(kt)j^,P=1.\vec{P}(t) = \cos(kt) \, \hat{i} - \sin(kt) \, \hat{j}, \quad |\vec{P}| = 1.
The linear momentum P\vec{P} is given by:

P=mv    P^=v,\vec{P} = m\vec{v} \implies \hat{P} = \vec{v},

where P^\hat{P} is the unit vector in the direction of P\vec{P}.

Step 1: Calculating the Velocity Vector
Differentiating P(t)\vec{P}(t) with respect to time to find the velocity vector:

v=dPdt=ksin(kt)i^kcos(kt)j^.\vec{v} = \frac{d\vec{P}}{dt} = -k\sin(kt) \, \hat{i} - k\cos(kt) \, \hat{j}.

The acceleration vector a\vec{a} is given by:

a=dvdt=k2cos(kt)i^+k2sin(kt)j^.\vec{a} = \frac{d\vec{v}}{dt} = -k^2\cos(kt) \, \hat{i} + k^2\sin(kt) \, \hat{j}.

Step 2: Calculating the Angle Between F\vec{F} and P\vec{P}
The force F\vec{F} is given by Newton’s second law:

F=ma.\vec{F} = m\vec{a}.

To find the angle θ\theta between F\vec{F} and P\vec{P}, we use the dot product:

cosθ=FPFP.\cos\theta = \frac{\vec{F} \cdot \vec{P}}{|\vec{F}||\vec{P}|}.

Substituting the expressions for F\vec{F} and P\vec{P}:

FP=(k2cos(kt))cos(kt)+(k2sin(kt))sin(kt)=k2(cos2(kt)+sin2(kt))=k2.\vec{F} \cdot \vec{P} = (-k^2\cos(kt))\cos(kt) + (k^2\sin(kt))\sin(kt) = -k^2(\cos^2(kt) + \sin^2(kt)) = -k^2.

Since F=k2|\vec{F}| = k^2 and P=1|\vec{P}| = 1, we have:

cosθ=k2k2=1    θ=π2.\cos\theta = \frac{-k^2}{k^2} = -1 \implies \theta = \frac{\pi}{2}.

Therefore, the angle between F\vec{F} and P\vec{P} is π2\frac{\pi}{2}.