Solveeit Logo

Question

Physics Question on System of Particles & Rotational Motion

A particle moves in the X-Y plane under the influence of a force such that its linear momentum is p(t)=A[i^cos(kt)j^sin(kt)]p(t) =A[\widehat{i}cos\, (kt) -\widehat{j}sin\, (kt)] where, A and k are constants. The angle between the force and the momentum is

A

00^\circ

B

3030^\circ

C

4545^\circ

D

9090^\circ

Answer

9090^\circ

Explanation

Solution

F=dpdt=kAsin(kt)i^kAcos(kt)j^ \, \, \, \, \, \, \, F=\frac{dp}{dt} =-kA\, sin\, (kt) \widehat{i} - kA\, cos\, (kt)\widehat{j}
p=Acos(kt)i^Asin(kt)j^\, \, \, \, \, \, \, p=A\, cos\, (kt) \widehat{i} - A\, sin\, (kt)\widehat{j}
Since, \hspace20mm F.p=0
\therefore Angle between F and p should be 90.90^\circ.