Solveeit Logo

Question

Question: A particle moves in the x-y plane under the action of a force \(\overset{\rightarrow}{F}\) such that...

A particle moves in the x-y plane under the action of a force F\overset{\rightarrow}{F} such that the value of its linear momentum (P)(\overset{\rightarrow}{P}) at anytime t is Px=2cost,py=2sint.P_{x} = 2\cos t,p_{y} = 2\sin t. The angle θ\thetabetween F\overset{\rightarrow}{F} and P\overset{\rightarrow}{P} at a given time t. will be

A

θ=0\theta = 0{^\circ}

B

θ=30\theta = 30{^\circ}

C

θ=90\theta = 90{^\circ}

D

θ=180\theta = 180{^\circ}

Answer

θ=90\theta = 90{^\circ}

Explanation

Solution

Px=2costP_{x} = 2\cos t, Py=2sintP_{y} = 2\sin tP=2cost6mui^+2sint6muj^\overrightarrow{P} = 2\cos t\mspace{6mu}\widehat{i} + 2\sin t\mspace{6mu}\widehat{j}

F=dPdt=2sint6mui^+2cost6muj^\overrightarrow{F} = \frac{d\overrightarrow{P}}{dt} = - 2\sin t\mspace{6mu}\widehat{i} + 2\cos t\mspace{6mu}\widehat{j}

F.P=0\overrightarrow{F}.\overrightarrow{P} = 0θ=90\theta = 90{^\circ}