Solveeit Logo

Question

Physics Question on work, energy and power

A particle moves in a straight line with retardation proportional to its displacement. Its loss of kinetic energy for any displacement xx is proportional to

A

x2{{x}^{2}}

B

ex{{e}^{x}}

C

xx

D

logex{{\log }_{e}}x

Answer

x2{{x}^{2}}

Explanation

Solution

From given information a=kx,a=-\,kx, where a is acceleration, xx is displacement and kk is a proportionality constant. vdvdx=kx\frac{v\,dv}{dx}=-\,k\,x \Rightarrow vdv=kxdxv\,dv=-\,k\,x\,dx Let for any displacement from 0 to x,x, the velocity changes from v0{{v}_{0}} to v. \Rightarrow v0vvdv=0xkxdx\int_{{{v}_{0}}}^{v}{v\,dv=-\int_{0}^{x}{k\,x\,dx}} \Rightarrow v2v022=kx22\frac{{{v}^{2}}-v_{0}^{2}}{2}=-\frac{k\,{{x}^{2}}}{2} \Rightarrow m(v2v022)=mkx22m\left( \frac{{{v}^{2}}-v_{0}^{2}}{2} \right)=-\frac{mk\,{{x}^{2}}}{2} \Rightarrow ΔKx2\Delta K\propto {{x}^{2}} [ ΔK\Delta K is loss in KE]