Solveeit Logo

Question

Question: A particle moves in a straight line with a velocity \[{v_t} = \left| {t - 4} \right|\,{\text{m/s}}\]...

A particle moves in a straight line with a velocity vt=t4m/s{v_t} = \left| {t - 4} \right|\,{\text{m/s}} where tt is time in seconds. The distance covered by the particle in 8s8\,{\text{s}} is
A. 8m8\,{\text{m}}
B. 16m16\,{\text{m}}
C. 4m4\,{\text{m}}
D. 2m2\,{\text{m}}

Explanation

Solution

Use the formula for the acceleration of the particle in terms of the velocity and the kinematic equation for the displacement of the particle. Determine the displacements of the particle for the first four seconds and then for the next four seconds.
Formula used:
The formula for the instantaneous acceleration aa of an object is
a=dvdta = \dfrac{{dv}}{{dt}} …… (1)
Here, dvdv is the small change in the velocity and dtdt is the small change in the time.
The kinematic expression for the displacement ss of an object is
s=ut+12at2s = ut + \dfrac{1}{2}a{t^2} …… (2)
Here, uu is the initial velocity of the object, aa is the acceleration of the object and tt is the time.

Complete step by step answer:
he velocity vt{v_t} of the particle is t4m/s\left| {t - 4} \right|\,{\text{m/s}}.
vt=t4m/s{v_t} = \left| {t - 4} \right|\,{\text{m/s}} …… (3)
For the time t<4t < 4, the velocity is (t4) - \left( {t - 4} \right) and for time t>4t > 4, the velocity is t4t - 4.
For time t<4t < 4 (between 0s0\,{\text{s}} to 4s4\,{\text{s}}), the velocity vt<4{v_{t < 4}} is
vt<4=t+4{v_{t < 4}} = - t + 4
Calculate the acceleration of the particle for the time t<4t < 4.
Rewrite equation (1) for the acceleration at<4{a_{t < 4}} for the time t<4t < 4.
at<4=dvt<4dt{a_{t < 4}} = \dfrac{{d{v_{t < 4}}}}{{dt}}
Substitute t+4 - t + 4 for vt<4{v_{t < 4}} in the above equation.
at<4=d(t+4)dt{a_{t < 4}} = \dfrac{{d\left( { - t + 4} \right)}}{{dt}}
at<4=d(t)dt+d(4)dt\Rightarrow {a_{t < 4}} = \dfrac{{d\left( { - t} \right)}}{{dt}} + \dfrac{{d\left( 4 \right)}}{{dt}}
at<4=(1)+(0)\Rightarrow {a_{t < 4}} = \left( { - 1} \right) + \left( 0 \right)
at<4=1m/s2\Rightarrow {a_{t < 4}} = - 1\,{\text{m/}}{{\text{s}}^2}
Hence, the acceleration for time t<4t < 4 is 1m/s2 - 1\,{\text{m/}}{{\text{s}}^2}.
This acceleration is uniform. Hence, calculate the initial velocity at time t=0st = 0\,s.
vt<4=t+4{v_{t < 4}} = - t + 4
Calculate the displacement for the time t=0st = 0\,{\text{s}}.
Substitute 0s0\,{\text{s}} for tt in equation (3).
v0s=(0s)4m/s{v_{0\,{\text{s}}}} = \left| {\left( {0\,{\text{s}}} \right) - 4} \right|\,{\text{m/s}}
v0s=4m/s\Rightarrow {v_{0\,{\text{s}}}} = 4\,{\text{m/s}}
Hence, the initial velocity of the particle is 4m/s4\,{\text{m/s}}.
Calculate the displacement for the time t=4st = 4\,{\text{s}}.
Substitute 4s4\,{\text{s}} for tt in equation (3).
v4s=(4s)4m/s{v_{4\,{\text{s}}}} = \left| {\left( {4\,{\text{s}}} \right) - 4} \right|\,{\text{m/s}}
v4s=0m/s\Rightarrow {v_{4\,{\text{s}}}} = 0\,{\text{m/s}}
Hence, the final velocity of the particle at t=4st = 4\,{\text{s}} is 0m/s0\,{\text{m/s}}.
Calculate the displacement of the particle in the first 4 seconds.
Rewrite equation (2) for the displacement of the particle in the first four seconds.
st<4=v0st+12at<4t2{s_{t < 4}} = {v_{0\,{\text{s}}}}t + \dfrac{1}{2}{a_{t < 4}}{t^2}
Substitute 4m/s4\,{\text{m/s}} for v0s{v_{0\,{\text{s}}}}, 4s4\,{\text{s}} for tt and 1m/s2 - 1\,{\text{m/}}{{\text{s}}^2} for at<4{a_{t < 4}} in the above equation.
st<4=(4m/s)(4s)+12(1m/s2)(4s)2{s_{t < 4}} = \left( {4\,{\text{m/s}}} \right)\left( {4\,{\text{s}}} \right) + \dfrac{1}{2}\left( { - 1\,{\text{m/}}{{\text{s}}^2}} \right){\left( {4\,{\text{s}}} \right)^2}
st<4=(16m)(8m)\Rightarrow {s_{t < 4}} = \left( {16\,{\text{m}}} \right) - \left( {8\,{\text{m}}} \right)
st<4=8m\Rightarrow {s_{t < 4}} = 8\,{\text{m}}
Hence, the displacement of the particle in the first four seconds is 8m8\,{\text{m}}.
For time t>4t > 4 (after 4s4\,{\text{s}}), the velocity vt>4{v_{t > 4}} is
vt>4=t4{v_{t > 4}} = t - 4
Calculate the acceleration of the particle for the time t>4t > 4.
Rewrite equation (1) for the acceleration at>4{a_{t > 4}} for the time t>4t > 4.
at>4=dvt>4dt{a_{t > 4}} = \dfrac{{d{v_{t > 4}}}}{{dt}}
Substitute t4t - 4 for vt>4{v_{t > 4}} in the above equation.
at>4=d(t4)dt{a_{t > 4}} = \dfrac{{d\left( {t - 4} \right)}}{{dt}}
at>4=d(t)dtd(4)dt\Rightarrow {a_{t > 4}} = \dfrac{{d\left( t \right)}}{{dt}} - \dfrac{{d\left( 4 \right)}}{{dt}}
at>4=(1)+(0)\Rightarrow {a_{t > 4}} = \left( 1 \right) + \left( 0 \right)
at>4=1m/s2\Rightarrow {a_{t > 4}} = 1\,{\text{m/}}{{\text{s}}^2}
Hence, the acceleration for time t>4t > 4 is 1m/s21\,{\text{m/}}{{\text{s}}^2}.
The initial velocity in the interval between 4s4\,{\text{s}} to 8s8\,{\text{s}}, v4s{v_{4\,{\text{s}}}} is the initial velocity of the particle.
Calculate the displacement of the particle in the interval between 4s4\,{\text{s}} to 8s8\,{\text{s}}.
Rewrite equation (2) for the displacement of the particle in the first four seconds.
st>4=v4st+12at>4t2{s_{t > 4}} = {v_{4\,{\text{s}}}}t + \dfrac{1}{2}{a_{t > 4}}{t^2}
Substitute 0m/s0\,{\text{m/s}} for v4s{v_{4\,{\text{s}}}}, 4s4\,{\text{s}} for tt and 1m/s21\,{\text{m/}}{{\text{s}}^2} for at>4{a_{t > 4}} in the above equation.
st>4=(0m/s)(4s)+12(1m/s2)(4s)2{s_{t > 4}} = \left( {0\,{\text{m/s}}} \right)\left( {4\,{\text{s}}} \right) + \dfrac{1}{2}\left( {1\,{\text{m/}}{{\text{s}}^2}} \right){\left( {4\,{\text{s}}} \right)^2}
st>4=(0m)+(8m)\Rightarrow {s_{t > 4}} = \left( {0\,{\text{m}}} \right) + \left( {8\,{\text{m}}} \right)
st>4=8m\Rightarrow {s_{t > 4}} = 8\,{\text{m}}
Hence, the displacement of the particle in the interval between 4s4\,{\text{s}} to 8s8\,{\text{s}} is 8m8\,{\text{m}}.
The total displacement ss of the particle is the sum of the displacements st<4{s_{t < 4}} and st>4{s_{t > 4}}.
s=st<4+st>4s = {s_{t < 4}} + {s_{t > 4}}
Substitute 8m8\,{\text{m}} for st<4{s_{t < 4}} and 8m8\,{\text{m}} for st>4{s_{t > 4}} in the above equation.
s=(8m)+(8m)s = \left( {8\,{\text{m}}} \right) + \left( {8\,{\text{m}}} \right)
s=16m\Rightarrow s = 16\,{\text{m}}
Therefore, the total displacement of the particle is 16m16\,{\text{m}}.

So, the correct answer is “Option B”.

Note:
One can also determine the displacement of the particle from the total area under the velocity-time curve of the given function.
This can also be seen from v=|t−4| that the velocity decreases continuously from 4m/s to zero in the first 4s and then increases from zero to 4m/s in the next 4s . Thus in the first 4s , the acceleration is 1m/s2−1m/s^2 and in the next 4s it is 1m/s21m/s^2.