Solveeit Logo

Question

Question: A particle moves in a circle of radius 4 cm clockwise at constant speed of 2 cm s<sup>-1</sup>. If \...

A particle moves in a circle of radius 4 cm clockwise at constant speed of 2 cm s-1. If x^\widehat{x}and y^\widehat{y}are unit acceleration vectors along x and y axes, respectively, the acceleration of the particle at the instant half way between PQ is given by

A

4(x^y^)- 4\left( \widehat{x} - \widehat{y} \right)

B

4(x^+y^)4\left( \widehat{x} + \widehat{y} \right)

C

(x^+y^)2\frac{- \left( \widehat{x} + \widehat{y} \right)}{\sqrt{2}}

D

x^y^4\frac{\widehat{x} - \widehat{y}}{4}

Answer

(x^+y^)2\frac{- \left( \widehat{x} + \widehat{y} \right)}{\sqrt{2}}

Explanation

Solution

Mid point acceleration,

a = v2r=44=1ms1\frac{v^{2}}{r} = \frac{4}{4} = 1ms^{- 1} at 450 with x axis

ax=acos45ox^{\overrightarrow{a}}_{x} = - a\cos 45^{o}\widehat{x}

= -1 × 12x^=12x^\frac{1}{2}\widehat{x} = - \frac{1}{\sqrt{2}}\widehat{x}

Thus a^=ax+ay=12(x^+y^)\widehat{a} = {\overrightarrow{a}}_{x} + {\overrightarrow{a}}_{y} = - \frac{1}{\sqrt{2}}\left( \widehat{x} + \widehat{y} \right)