Solveeit Logo

Question

Question: A particle moves along the trajectory of parabola y = ax<sup>2</sup>. Assuming speed to be constant,...

A particle moves along the trajectory of parabola y = ax2. Assuming speed to be constant, find the radius of curvature.

A

1/2a

B

1/a

C

1/2ax

D

2/a

Answer

1/2a

Explanation

Solution

y = ax2; dy/dt = 2ax (dy/dt) or

d2ydt2=2a(dxdt)2+2axd2xdt2\frac{d^{2}y}{dt^{2}} = 2a\left( \frac{dx}{dt} \right)^{2} + 2ax\frac{d^{2}x}{dt^{2}}

As the speed is constant only acceleration present is

ar = v2r; d2ydt2x=0=2a(dxdt)2\frac{v^{2}}{r};\left. \ \frac{d^{2}y}{dt^{2}} \right|_{x = 0} = 2a\left( \frac{dx}{dt} \right)^{2}

2av2 = v2r\frac{v^{2}}{r} or R= 12a\frac{1}{2a}.