Solveeit Logo

Question

Mathematics Question on Application of derivatives

A particle moves along the curve 6y=x3+26y = x^3 + 2. The point ?P??P? on the curve at which the y-coordinate is changing 8 times as fast as the x-coordinate, are (4,11)(4, 11) and (4,313).\left(-4, -\frac{31}{3}\right).

A

x-coordinates at the point P are ?4? 4

B

y-coordinates at the point P are 11 and 313\frac{-31}{3}

C

Both (a) and (b)

D

None of the above

Answer

Both (a) and (b)

Explanation

Solution

Given, 6y=x3+26y = x^3 + 2 On differentiating w.r.t. t, we get 6dydt=3x2dxdt6×8dxdt=3x2dxdt6 \frac{dy}{dt}=3x^{2} \frac{dx}{dt} \Rightarrow 6\times8 \frac{dx}{dt}=3x^{2} \frac{dx}{dt} 3x2=48x2=16\Rightarrow 3x^{2}=48 \Rightarrow x^{2}=16 x=±4\Rightarrow x=\pm4 When x=4x = 4, then 6y=(4)3+26y = \left(4\right)^{3} + 2 6y=64+2y=666=11\Rightarrow 6y=64+2 \Rightarrow y=\frac{66}{6}=11 When x=4x = - 4, then 6y=(4)3+26y = \left(- 4\right)^{3} + 2 6y=64+2\Rightarrow 6y=-64+2 y=626=313\Rightarrow y=\frac{-62}{6}=\frac{-31}{3} Hence, the required points on the curve are (4,11)\left(4, 11\right) and (4,313)\left(-4, \frac{-31}{3}\right)