Solveeit Logo

Question

Question: A particle moves along a straight line as per equation x<sup>2</sup> = αt<sup>2</sup> + 2βt + γ, whe...

A particle moves along a straight line as per equation x2 = αt2 + 2βt + γ, where x is the distance travelled and α, β, γ are constants. Its acceleration varies as

A

x-3

B

x3/2

C

x-2/3

D

x2

Answer

x-3

Explanation

Solution

Given x2 = (αt2 + 2βt + γ)

∴ x = (αt2 + 2βt + γ)1/2

v = dxdt=12\frac { \mathrm { dx } } { \mathrm { dt } } = \frac { 1 } { 2 } (αt2 + 2βt + γ)1/2 (2αt + 2β)

= (αt2 + 2βt + γ)1/2 (αt + β)

and a = dvdt=12\frac { \mathrm { dv } } { \mathrm { dt } } = - \frac { 1 } { 2 } (αt2 + 2βt + γ)1/2

(2αt + 2β) (αt + β) + (αt2 + 2βt + γ)-1/2 (α)

= -(αt2 + 2βt + γ)-3/2 (αt + β)2 + α(αt + 2β + γ)-1/2

= (αt2 + 2βt + γ)-3/2 – (α2t2 –  α2 – 2αβt + α2t2 + 2αβt + αγ)

= αγβ2(αt2+2βt+γ)3/2=αγβ2x3\frac { \alpha \gamma - \beta ^ { 2 } } { \left( \alpha t ^ { 2 } + 2 \beta t + \gamma \right) ^ { 3 / 2 } } = \frac { \alpha \gamma - \beta ^ { 2 } } { x ^ { 3 } }

Thus a ∝x-3