Solveeit Logo

Question

Question: A particle moves along a straight line and its velocity depends on time \(t\)as \(v = 4t - {t^2}\). ...

A particle moves along a straight line and its velocity depends on time ttas v=4tt2v = 4t - {t^2}. Here vvis in meters per second and ttis in seconds. Then for the first 5 seconds:

A.A. Magnitude velocity of average velocity is 53m\dfrac{5}{3}mper ss
B.B.Average speed is 135\dfrac{{13}}{5} mmper ss
C.C. Average speed is 115m\dfrac{{11}}{5}mper s
D.D. Average acceleration is 1m - 1mper s2{s^2}

Explanation

Solution

Hint: Here we will proceed by calculating the magnitude velocity, then average speed after that by calculating final velocity and initial velocity we can calculate average acceleration.

Step By Step Answer:
Formula used:

Average acceleration isAavg=vfvut{A_{avg}} = \dfrac{{vf - vu}}{{\vartriangle t}}

Average Speed (S)= distancetravelled(s)timetaken(t)\dfrac{{dis\tan cetravelled\left( s \right)}}{{timetaken\left( t \right)}}
Average velocity that is vavg=stvavg = \dfrac{s}{{\vartriangle t}}

Here it is given that,

v=4tt2v = 4t - {t^2}

Where v'v'is velocity of body in meter per second
And, t't'is time in seconds.

In order to calculate distance ‘s’, we need to Integrate the value of velocity v'v' with the function of time, t't'over the limit 0 to 5 sec.

So,

S=05vdtS = \int\limits_0^5 {vdt}
S=054tt2dt\Rightarrow S = \int\limits_0^5 {4t - {t^2}dt} ….. (1)
S=054td05t2dt\Rightarrow S = \int\limits_0^5 {4td - \int\limits_0^5 {{t^2}} } dt
S=405tdt[t33]05\Rightarrow S = 4\int\limits_0^5 {tdt} - \left[ {\dfrac{{{t^3}}}{3}} \right]_0^5
S=4[t22]05[533033]\Rightarrow S = 4\left[ {\dfrac{{{t^2}}}{2}} \right]_0^5 - \left[ {\dfrac{{{5^3}}}{3} - \dfrac{{{0^3}}}{3}} \right]

S=2[5202][12530] S=2(25)1253 S=501253 S=501253 =253m  \Rightarrow S = 2\left[ {{5^2} - {0^2}} \right] - \left[ {\dfrac{{125}}{3} - 0} \right] \\\ \Rightarrow S = 2\left( {25} \right) - \dfrac{{125}}{3} \\\ \Rightarrow S = 50 - \dfrac{{125}}{3} \\\ \Rightarrow S = \dfrac{{50 - 125}}{3} \\\ = \dfrac{{25}}{3}m \\\

Therefore, Distance ‘S’ =253m = \dfrac{{25}}{3}m
And, as we know that

Average velocity Vavg=Distance(s)Time(t)Vavg = \dfrac{{Dis\tan ce\left( s \right)}}{{Time\left( t \right)}}

=2535 =253×15  = \dfrac{{\dfrac{{25}}{3}}}{5} \\\ = \dfrac{{25}}{3} \times \dfrac{1}{5} \\\

=53 = \dfrac{5}{3} meter per second.

Again, average speed is given by,

=DistancecoveredTimetaken =Distancet  = \dfrac{{Dis\tan ce\operatorname{cov} ered}}{{Timetaken}} \\\ = \dfrac{{Dis\tan ce}}{{\vartriangle t}} \\\

Now, Distance travelled in case of Average speed is calculated by integrating over the function of time from limits 0 to 4 with the sum of integrating speed over the function of time from limit 4 to 5.

Distance, S=04vdt+45vdtS = \int\limits_0^4 {vdt} + \int\limits_4^5 { - vdt}

=044tt2dt454tt2dt = \int\limits_0^4 {4t - {t^2}dt - \int\limits_4^5 {4t - {t^2}} } dt ….. (By using equation 1)

= \left[ {\dfrac{{4{t^2}}}{2} - \dfrac{{{t^3}}}{3}} \right]_0^4 - \left[ {\dfrac{{4{t^2}}}{2} - \dfrac{{{t^3}}}{3}} \right]_4^5 \\\ = \left[ {\dfrac{{4{{\left( 4 \right)}^2}}}{2} - {{\dfrac{{\left( 4 \right)}}{3}}^3}} \right] - \left[ {\dfrac{{4{{\left( 0 \right)}^2}}}{2} - \dfrac{{{{\left( 0 \right)}^2}}}{3}} \right] - \left\\{ {\left[ {\dfrac{{4{{\left( 5 \right)}^2}}}{2} - \dfrac{{{{\left( 5 \right)}^3}}}{3}} \right] - \left[ {\dfrac{{4{{\left( 4 \right)}^2}}}{2} - \dfrac{{{{\left( 4 \right)}^3}}}{3}} \right]} \right\\} \\\

= \left[ {\dfrac{{64}}{2} - \dfrac{{64}}{3}} \right] - \left[ 0 \right] - \left\\{ {\left( {50 - \dfrac{{125}}{3}} \right) - \left( {32 - \dfrac{{64}}{3}} \right)} \right\\}
=[327643][50125332+643]= \left[ {\dfrac{{32}}{7} - \dfrac{{64}}{3}} \right] - \left[ {50 - \dfrac{{125}}{3} - 32 + \dfrac{{64}}{3}} \right]

=3264350+1253+32643 =141 =13m  = 32 - \dfrac{{64}}{3} - 50 + \dfrac{{125}}{3} + 32 - \dfrac{{64}}{3} \\\ = 14 - 1 \\\ = 13m \\\

So, Average Speed (S)= distancetravelled(s)timetaken(t)\dfrac{{dis\tan cetravelled\left( s \right)}}{{timetaken\left( t \right)}}

=135 = \dfrac{{13}}{5} meter per second.
Now, again average acceleration is given by

Aavg=vfvut{A_{avg}} = \dfrac{{vf - vu}}{{\vartriangle t}}

Aavg=\Rightarrow {A_{avg}} = where aavg{a_{avg}}is average acceleration
vf=vf = final velocity
vuvu= initial velocity
t=\vartriangle t = time
vf=4tt2vf = 4t - {t^2} v

In case of velocity t will be 5 sec

vf=4(5)(5)2 =2025  \therefore vf = 4\left( 5 \right) - {\left( 5 \right)^2} \\\ = 20 - 25 \\\

=5 = - 5 meter per second.

In case of initial velocity, t will be 0 sec.

vi=4(0)(0) =00 =0  \therefore vi = 4\left( 0 \right) - \left( 0 \right) \\\ = 0 - 0 \\\ = 0 \\\

Now,

Aavg=vfvit =505 =55  Aavg = \dfrac{{vf - vi}}{t} \\\ = \dfrac{{ - 5 - 0}}{5} \\\ = \dfrac{{ - 5}}{5} \\\

     $ = - 1$ meter per second$^2$   

Thus, Average acceleration will be 1 - 1 meter per second2^2

Therefore, option A, B and D holds for this question.

Note: Whenever we come up with this type of question, where we are asked to find out the velocity of a particle. Then we first write down the formula for average velocity. After that we will calculate average speed. By calculating average speed, we can calculate average acceleration. Thus by solving questions step by step we will find our answer.