Solveeit Logo

Question

Question: A particle moves along a circle of radius 20/p m with constant tangential acceleration. If the veloc...

A particle moves along a circle of radius 20/p m with constant tangential acceleration. If the velocity of the particle is 80 m/s at the end of the second revolution after motion has begin, the tangential acceleration is:

A

640 p m/s2

B

160 p m/s2

C

40 p m/s2

D

40 m/s2

Answer

40 m/s2

Explanation

Solution

ω=vr=8020/π=4π,ω0=0,θ=2π(n)=4π\omega = \frac{v}{r} = \frac{80}{20/\pi} = 4\pi,\omega_{0} = 0,\theta = 2\pi(n) = 4\pi

ω2=ω02+2αθα=ω2ω022θ=16π22×4π=2π\omega^{2} = \omega_{0}^{2} + 2\alpha\theta \Rightarrow \alpha = \frac{\omega^{2} - \omega_{0}^{2}}{2\theta} = \frac{16\pi^{2}}{2 \times 4\pi} = 2\pi

Tangential acceleration

at=rα=20π×2π=40m/s2a_{t} = r\alpha = \frac{20}{\pi} \times 2\pi = 40m ⥂ / ⥂ s^{2}