Solveeit Logo

Question

Question: A particle moves according to the equation dv/dt = α - βv where α and β are constants. Find velocity...

A particle moves according to the equation dv/dt = α - βv where α and β are constants. Find velocity as a function of time. Assume body starts from rest.

A

v = βα(1eβt)\frac{\beta}{\alpha}\left( 1 - e^{- \beta t} \right)

B

v = αβ(1eβt)\frac{\alpha}{\beta}\left( 1 - e^{- \beta t} \right)

C

βαeβt\frac{\beta}{\alpha}e^{- \beta t}

D

αβeβt\frac{\alpha}{\beta}e^{- \beta t}

Answer

v = αβ(1eβt)\frac{\alpha}{\beta}\left( 1 - e^{- \beta t} \right)

Explanation

Solution

0vβdvα βv=β0tdt\int_{0}^{v}\frac{- \beta dv}{\alpha - \ \beta v} = - \beta\int_{0}^{t}{dt}

loge (αβv)α=βt\frac{(\alpha - \beta v)}{\alpha} = - \beta t or v = αβ\frac{\alpha}{\beta} (1 – e-βt)