Solveeit Logo

Question

Physics Question on Motion in a straight line

A particle located at x = 0 at time t - 0, starts moving along the positive x-direction with a velocity 'V' that varies as v=αx.v=\alpha\sqrt{x.} The displacement of the particle varies with time as:

A

t2t^{2}

B

t

C

t1/2t^{1/2}

D

t3t^{3}

Answer

t2t^{2}

Explanation

Solution

v=αxv=\alpha\sqrt{x} dxdt=αx(v=dxdt)\frac{d x}{d t}=\alpha\sqrt{x} \, \quad\left(\because v=\frac{d x}{d t}\right) dxx=αdt\frac{d x}{\sqrt{x}}=\alpha \, dt Perform integration 0xdxx=01αdt\int_{0}^{x} \frac{dx}{\sqrt{x}}=\int_{0}^{1} \alpha dt [att=0,x=0andletatanytimet,particleisatx]\left[\because at\, t = 0, \,x = 0 and \,let\, at \,any \,time t,\, particle\, is \, at \, x\right] x1/21/20x=αt\Rightarrow \quad \frac{x^{1 /2}}{1 /2}|_{0}^{x}=\alpha t x1/2=α2t\Rightarrow \quad x^{1 / 2}=\frac{\alpha}{2} t x=α24×t2xt2\Rightarrow \quad\quad x=\frac{\alpha^{2}}{4}\times t^{2} \Rightarrow x \propto t^{2}