Solveeit Logo

Question

Question: A particle is released from rest from a tower of height 3h. The ratio of the intervals of time to co...

A particle is released from rest from a tower of height 3h. The ratio of the intervals of time to cover three equal heights h is

A

t1:t2:t3=3:2:1t_{1}:t_{2}:t_{3} = 3:2:1

B

t1:t2:t3=1:(21):(3:2)t_{1}:t_{2}:t_{3} = 1:\left( \sqrt{2} - 1 \right):\left( \sqrt{3}:2 \right)

C

t1:t2:t3=3:2:1t_{1}:t_{2}:t_{3} = \sqrt{3}:\sqrt{2}:1

D

t1:t2:t3=1:(21):(32)t_{1}:t_{2}:t_{3} = 1:\left( \sqrt{2} - 1 \right):\left( \sqrt{3} - \sqrt{2} \right)

Answer

t1:t2:t3=1:(21):(32)t_{1}:t_{2}:t_{3} = 1:\left( \sqrt{2} - 1 \right):\left( \sqrt{3} - \sqrt{2} \right)

Explanation

Solution

Let t1,t2,t3t_{1},t_{2},t_{3}be the timings for three successive equal heights h covered during the free fall of the particle.

Then

h=12gt12h = \frac{1}{2}gt_{1}^{2} (u=0\because u = 0)

Or t1=2hgt_{1} = \sqrt{\frac{2h}{g}} ….. (i)

2h=12g(t1+t2)22h = \frac{1}{2}g(t_{1} + t_{2})^{2}

Or t1+t2=4hgt_{1} + t_{2} = \sqrt{\frac{4h}{g}} …… (ii)

3h=12g(t1+t2+t3)23h = \frac{1}{2}g(t_{1} + t_{2} + t_{3})^{2}

Or t1+t2+t3=6hgt_{1} + t_{2} + t_{3} = \sqrt{\frac{6h}{g}} ……. (iii)

Subtracting (i) from (ii), we get

t2=4hg2hg=2hg(21)t_{2} = \sqrt{\frac{4h}{g}} - \sqrt{\frac{2h}{g}} = \sqrt{\frac{2h}{g}}(\sqrt{2} - 1) ……. (iv)

Subtracting (ii) form (iii), we get

t3=6hg4hg=2hg(32)t_{3} = \sqrt{\frac{6h}{g}} - \sqrt{\frac{4h}{g}} = \sqrt{\frac{2h}{g}}(\sqrt{3} - \sqrt{2}) ……. (v)

From (i),(iv) and (v),we get

t1:t2:t3=1:(21);(32)t_{1}:t_{2}:t_{3} = 1: (\sqrt{2} - 1);(\sqrt{3} - \sqrt{2})