Solveeit Logo

Question

Question: A particle is projected with a speed of 20 m/s at an angle of 30° with the horizontal. Find: The max...

A particle is projected with a speed of 20 m/s at an angle of 30° with the horizontal. Find: The maximum height reached by the particle. The time of flight. The horizontal range. (Take g = 10 m/s²)

Answer

The maximum height reached by the particle is 5 m. The time of flight is 2 s. The horizontal range is 20320\sqrt{3} m.

Explanation

Solution

The problem involves projectile motion. We are given the initial speed (uu), the angle of projection (θ\theta), and the acceleration due to gravity (gg). We need to find the maximum height (HH), time of flight (TT), and horizontal range (RR).

Given values: Initial speed, u=20u = 20 m/s Angle of projection, θ=30\theta = 30^\circ Acceleration due to gravity, g=10g = 10 m/s2^2

We use the standard formulas for projectile motion:

  1. Maximum Height (H): The formula for maximum height is: H=u2sin2θ2gH = \frac{u^2 \sin^2 \theta}{2g} Substituting the given values: sin30=12\sin 30^\circ = \frac{1}{2} sin230=(12)2=14\sin^2 30^\circ = (\frac{1}{2})^2 = \frac{1}{4} H=(20)2×142×10=400×1420=10020=5 mH = \frac{(20)^2 \times \frac{1}{4}}{2 \times 10} = \frac{400 \times \frac{1}{4}}{20} = \frac{100}{20} = 5 \text{ m}

  2. Time of Flight (T): The formula for the time of flight is: T=2usinθgT = \frac{2u \sin \theta}{g} Substituting the given values: T=2×20×1210=2010=2 sT = \frac{2 \times 20 \times \frac{1}{2}}{10} = \frac{20}{10} = 2 \text{ s}

  3. Horizontal Range (R): The formula for the horizontal range is: R=u2sin(2θ)gR = \frac{u^2 \sin(2\theta)}{g} Substituting the given values: sin(2θ)=sin(2×30)=sin(60)=32\sin(2\theta) = \sin(2 \times 30^\circ) = \sin(60^\circ) = \frac{\sqrt{3}}{2} R=(20)2×3210=400×3210=200310=203 mR = \frac{(20)^2 \times \frac{\sqrt{3}}{2}}{10} = \frac{400 \times \frac{\sqrt{3}}{2}}{10} = \frac{200\sqrt{3}}{10} = 20\sqrt{3} \text{ m}

Summary of Results:

  • The maximum height reached by the particle is 5 m.
  • The time of flight is 2 s.
  • The horizontal range is 20320\sqrt{3} m.