Question
Question: A particle is projected in air at an angle \(\beta\)to a surface which itself is inclined at an angl...
A particle is projected in air at an angle βto a surface which itself is inclined at an angle αto the horizontal. Then distance L is equal to

gcos2α2u2sinαcos(α+β)
gcos2β2u2sinβcos(α+β)
gcos2α2u2sinβcos(α+β)
gcos2β2u2sinαcos(α+β)
gcos2α2u2sinβcos(α+β)
Solution

Take the x – axis along the incline and y – axis perpendicular to the plane.
∴us=ucosβ
uy=usinβ
ax=−gsinα
ay=−gcosα
When the particle lands at P its y coordinate becomes zero.
∴0=uyt+21ayt2
0=usinβt−21gcosαt2
Or t=gcosα2usinβ ….. (i)
For motions along inclined plane
x=usinβt−21gcosαt2
∴L=ucosβt=21gsinαt2
Substituting the value of t form Eq. (i) we get
L=ucosβ(gcosα2usinβ)−21gsinα(gcosα2usinβ)
=gcosα2u2sinβcosβ−gcos2α2u2sinαsin2β
=gcos2α2u2[sinβcosβcosα−sinαsin2β]=gcos2α2u2sinβ[cosβcosα−sinαsinβ]=gcos2α2u2sinβcos(α+β)