Solveeit Logo

Question

Question: A particle is projected in air at an angle \(\beta\)to a surface which itself is inclined at an angl...

A particle is projected in air at an angle β\betato a surface which itself is inclined at an angle α\alphato the horizontal. Then distance L is equal to

A

2u2sinαcos(α+β)gcos2α\frac{2u^{2}\sin\alpha\cos(\alpha + \beta)}{g\cos^{2}\alpha}

B

2u2sinβcos(α+β)gcos2β\frac{2u^{2}\sin\beta\cos(\alpha + \beta)}{g\cos^{2}\beta}

C

2u2sinβcos(α+β)gcos2α\frac{2u^{2}\sin\beta\cos(\alpha + \beta)}{g\cos^{2}\alpha}

D

2u2sinαcos(α+β)gcos2β\frac{2u^{2}\sin\alpha\cos(\alpha + \beta)}{g\cos^{2}\beta}

Answer

2u2sinβcos(α+β)gcos2α\frac{2u^{2}\sin\beta\cos(\alpha + \beta)}{g\cos^{2}\alpha}

Explanation

Solution

Take the x – axis along the incline and y – axis perpendicular to the plane.

us=ucosβ\therefore u_{s} = u\cos\beta

uy=usinβu_{y} = u\sin\beta

ax=gsinαa_{x} = - g\sin\alpha

ay=gcosαa_{y} = - g\cos\alpha

When the particle lands at P its y coordinate becomes zero.

0=uyt+12ayt2\therefore 0 = u_{y}t + \frac{1}{2}a_{y}t^{2}

0=usinβt12gcosαt20 = u\sin\beta t - \frac{1}{2}g\cos\alpha t^{2}

Or t=2usinβgcosαt = \frac{2u\sin\beta}{g\cos\alpha} ….. (i)

For motions along inclined plane

x=usinβt12gcosαt2x = u\sin\beta t - \frac{1}{2}g\cos\alpha t^{2}

L=ucosβt=12gsinαt2\therefore L = u\cos\beta t = \frac{1}{2}g\sin\alpha t_{2}

Substituting the value of t form Eq. (i) we get

L=ucosβ(2usinβgcosα)12gsinα(2usinβgcosα)L = u\cos\beta\left( \frac{2u\sin\beta}{g\cos\alpha} \right) - \frac{1}{2}g\sin\alpha\left( \frac{2u\sin\beta}{g\cos\alpha} \right)

=2u2sinβcosβgcosα2u2sinαsin2βgcos2α= \frac{2u^{2}\sin\beta\cos\beta}{g\cos\alpha} - \frac{2u^{2}\sin\alpha\sin^{2}\beta}{g\cos^{2}\alpha}

=2u2gcos2α[sinβcosβcosαsinαsin2β]=2u2sinβgcos2α[cosβcosαsinαsinβ]=2u2sinβcos(α+β)gcos2α= \frac{2u^{2}}{g\cos^{2}\alpha}\lbrack\sin\beta\cos\beta\cos\alpha - \sin\alpha\sin^{2}\beta\rbrack = \frac{2u^{2}\sin\beta}{g\cos^{2}\alpha}\lbrack\cos\beta\cos\alpha - \sin\alpha\sin\beta\rbrack = \frac{2u^{2}\sin\beta\cos(\alpha + \beta)}{g\cos^{2}\alpha}