Solveeit Logo

Question

Physics Question on Motion in a plane

A particle is projected from the ground with an initial speed of v at an angle θ\theta with horizontal. The average velocity of the particle between its point of projection and highest point of trajectory is

A

v21+2cos2θ\frac{v}{2} \sqrt{1+2 cos^{2} \theta}

B

v21+cos2θ\frac{v}{2} \sqrt{1+ cos^{2} \theta}

C

v21+3cos2θ\frac{v}{2} \sqrt{1+3 cos^{2} \theta}

D

v cos θ\theta

Answer

v21+3cos2θ\frac{v}{2} \sqrt{1+3 cos^{2} \theta}

Explanation

Solution

From figure, average velocity, vav=H2+R2/4T/2v_{ av }=\frac{\sqrt{H^{2}+R^{2} / 4}}{T / 2}...(i) Here, H=u2sin2θ2gH=\frac{u^{2} \sin ^{2} \theta}{2 g} R=u2sin2θgR=\frac{u^{2} \sin 2 \theta}{g} and T=2usinθgT=\frac{2 u \sin \theta}{g} Putting these value in (i), we get vav=v21+3cos2θv_{ av }=\frac{v}{2} \sqrt{1+3 \cos ^{2} \theta}