Solveeit Logo

Question

Question: A particle is projected from the ground with an initial speed of v at an angle q with horizontal. Th...

A particle is projected from the ground with an initial speed of v at an angle q with horizontal. The average velocity of the particle between its point of projection and highest point of trajectory is –

A

v2\frac { v } { 2 } 1+2cos2θ\sqrt{1 + 2\cos^{2}\theta}

B

v2\frac { v } { 2 } 1+cos2θ\sqrt{1 + \cos^{2}\theta}

C

v2\frac { v } { 2 } 1+3cos2θ\sqrt{1 + 3\cos^{2}\theta}

D

v cosq

Answer

v2\frac { v } { 2 } 1+3cos2θ\sqrt{1 + 3\cos^{2}\theta}

Explanation

Solution

Average velocity =displacementtime\frac{displacement}{time}

vav =H2+R24T/2\frac{\sqrt{H^{2} + \frac{R^{2}}{4}}}{T/2} … (1)

Here, H = maximum height =v2sin2θ2g\frac{v^{2}\sin^{2}\theta}{2g}

R = range =v2sin2θg\frac{v^{2}\sin 2\theta}{g}and T = time of flight =2vsinθg\frac{2v\sin\theta}{g}

Substituting in Eq. (1) we get

vav = v2\frac { v } { 2 } 1+3cos2θ\sqrt{1 + 3\cos^{2}\theta}