Solveeit Logo

Question

Physics Question on projectile motion

A particle is projected at an angle of 30° with ground with speed 40 m/s. The speed of the particle after 2 s is (use g=10 ms-2)

Answer

Initial velocity (u)=40  m/s(u) = 40 \;m/s
Angle of projection (θ)=30°(θ) = 30°
Acceleration due to gravity (g)=10  m/s2(g) = 10 \;m/s²

Horizontal component (ux)=u(u_x) = u ×\times cos(θ)cos(θ)
Vertical component (uy)=u×sin(θ)(u_y) = u \times sin(θ)

Horizontal component (ux)=40×cos(30°)34.64  m/s(u_x) = 40 \times cos(30°) ≈ 34.64 \;m/s
Vertical component (uy)=40×sin(30°)20  m/s(u_y) = 40 \times sin(30°) ≈ 20 \;m/s

velocity after 22 seconds: vy=uy+gtv_y = u_y + gt

Substituting the known values: vy=20+(10×2)=20+20=40  m/sv_y = 20 + (10 \times 2) = 20 + 20 = 40 \;m/s

Now, to find the resultant velocity after 2 seconds, we can use Pythagoras' theorem:

v=(vx2+vy2)v = \sqrt{(v_x² + v_y²)}

v=((34.64)2+(40)2)v(1199.13+1600)(2799.13)52.92  m/sv = \sqrt{((34.64)²} + (40)²) v ≈ \sqrt{(1199.13 + 1600) }≈ \sqrt{(2799.13)} ≈ 52.92 \;m/s

So, the speed of the particle after 22 seconds is approximately 52.9252.92 m/sm/s.