Solveeit Logo

Question

Question: A particle is moving with velocity \(\overrightarrow{v}=K(y\overrightarrow{i}+x\overrightarrow{j})\)...

A particle is moving with velocity v=K(yi+xj)\overrightarrow{v}=K(y\overrightarrow{i}+x\overrightarrow{j}), where K is a constant. The general equation for its path is:
(A)y=x2+constant (B)y2=x+constant (C)xy=constant (D)y2=x2+constant \begin{aligned} & (A)y={{x}^{2}}+constant \\\ & (B){{y}^{2}}=x+constant \\\ & (C)xy=constant \\\ & (D){{y}^{2}}={{x}^{2}}+constant \\\ \end{aligned}

Explanation

Solution

First consider the general equation of v\overrightarrow{v} and compare it with the given equation of v\overrightarrow{v}. Then we will get a value for the x and y component of v\overrightarrow{v}. Then differentiating the x and y component of v\overrightarrow{v} with respect to time t. Then we get two equations. And by dividing them we will get dydx\dfrac{dy}{dx}. Then by using a variable separable method and integrating we will get the final answer.

Complete answer:
Given that,
v=K(yi+xj)\overrightarrow{v}=K(y\overrightarrow{i}+x\overrightarrow{j})
v=Kyi+Kxj\overrightarrow{v}=Ky\overrightarrow{i}+Kx\overrightarrow{j} ………….(1)
Consider the general equation of v\overrightarrow{v},
v=vxi+vyjv={{v}_{x}}\overrightarrow{i}+{{v}_{_{y}}}\overrightarrow{j} ………….(2)
Comparing equation (1) and (2),
We will get like this,
vx=Ky{{v}_{x}}=Ky
and
vy=Kx{{v}_{y}}=Kx
Then by differentiating the x and y component of v we get,
dxdt=Ky\dfrac{dx}{dt}=Ky ………….(3)
dydt=Kx\dfrac{dy}{dt}=Kx …………(4)
Now by dividing equation(4) by (3),
dydx=dydtdxdt=xy\dfrac{dy}{dx}=\dfrac{\dfrac{dy}{dt}}{\dfrac{dx}{dt}}=\dfrac{x}{y}
Then by using variable separable method and rearranging we get,
ydy=xdxydy=xdx
Integrating on both sides we get,
ydy=xdx\int{ydy=\int{xdx}}
We know that in general,
xdx=x22\int{xdx=\dfrac{{{x}^{2}}}{2}}
By using this concept it becomes,
y22=x22+c\dfrac{{{y}^{2}}}{2}=\dfrac{{{x}^{2}}}{2}+c ………………..(5)
Then multiplying equation (5) by 2 we get,
y2=x2+2c{{y}^{2}}={{x}^{2}}+2c
where 2c is the constant of integration.
Then it becomes,
y2=x2+{{y}^{2}}={{x}^{2}}+ constant.
This is the general equation for its path.

Hence, option(D) is correct.

Note:
The general equation for v\overrightarrow{v} is vxi+vyj{{v}_{x}}\overrightarrow{i}+{{v}_{y}}\overrightarrow{j} and compare it with the given equation of v\overrightarrow{v}. Then we will get a value for the x and y component of v\overrightarrow{v}. While using Variable separation method for integration, always bring x components to one side and y components to the other side. The name itself shows that. Thus we get the general equation of path .