Solveeit Logo

Question

Physics Question on Motion in a plane

A particle is moving with a uniform speed vv in a circular path of radius rr with the centre at OO. When the particle moves from a point PP to QQ on the circle such that ?POQ=θ? POQ=\theta, then the magnitude of the change in velocity is

A

2vsin(2θ)2v\,sin\left(2\theta\right)

B

zero

C

2vsin(θ2)2v\,sin\left(\frac{\theta}{2}\right)

D

2vcos(θ2)2v\,cos\left(\frac{\theta}{2}\right)

Answer

2vsin(θ2)2v\,sin\left(\frac{\theta}{2}\right)

Explanation

Solution


\therefore Change in magnitude of velocity
Δv=v2+v22v2cosθ|\Delta v | =\sqrt{v^{2}+v^{2}-2 v^{2} \cos \theta}
=2vsinθ2=2 v \sin \frac{\theta}{2}