Solveeit Logo

Question

Physics Question on Motion in a plane

A particle is moving such that its position coordinates (x, y) are (2 m, 3 m) at time t = 0, (6 m, 7 m) at time t = 2 s and (13 m, 14 m) at time t = 5 s. Average velocity vector (vav) ( \vec{ v_{av}}) from t = 0 to t = 5 s is .

A

15(13i^+14j^)\frac{ 1}{ 5} (13 \widehat{ i} + 14 \widehat{j})

B

73(i^+j^) \frac{ 7}{ 3} ( \widehat{i} + \widehat{j})

C

2 (i^+j^) ( \widehat{i} + \widehat{j})

D

115(i^+j^) \frac{11}{ 5} ( \widehat{i} + \widehat{j})

Answer

115(i^+j^) \frac{11}{ 5} ( \widehat{i} + \widehat{j})

Explanation

Solution

At time t = 0, the position vector of the particle is
r1=2i^+3j^\vec{r_1} = 2 \widehat{i} + 3 \widehat{j}
At time t = 5 s, the position vector of the particle is
r2=13i^+14j^\vec{r_2} = 13 \widehat{i} + 14 \widehat{j}
Displacement from r1\vec{r_1} to r2\vec{r_2} is
r=r2r1=(13i^+14j^)(2i^+3j^)\triangle \vec{r} = \vec{r_2} - \vec{r_1} = (13 \widehat{i} + 14 \widehat{j}) - (2 \widehat{i} + 3 \widehat{j})
=11i^+11j^=11 \widehat{i} + 11 \widehat{j}
\therefore Average velocity,
vav=rt=11i^+11j^50=115(i^+j^)\vec{v_{ av}} = \frac{ \triangle \vec{r}}{ \triangle t} = \frac{ 11 \widehat{i} + 11 \widehat{j}}{ 5 - 0 } = \frac{ 11}{ 5} ( \widehat{i} + \widehat{j})