Solveeit Logo

Question

Question: A particle is moving on a circular path of 10 m radius. At any instant of time, its speed is \(2 \m...

A particle is moving on a circular path of 10 m radius. At any instant of time, its speed is 2 m s22 \mathrm {~m} \mathrm {~s} ^ { - 2 } . The force acting on the particle is :

A

mω2rm \omega ^ { 2 } \overrightarrow { \mathbf { r } }

B

mω2r- m \omega ^ { 2 } \overrightarrow { \mathrm { r } }

C

2mω2r2 m \omega ^ { 2 } \overrightarrow { \mathbf { r } }

D

2mω2r- 2 m \omega ^ { 2 } \overrightarrow { \mathrm { r } }

Answer

mω2r- m \omega ^ { 2 } \overrightarrow { \mathrm { r } }

Explanation

Solution

Given r=Acosωti^+Bsinωtj^\vec { r } = A \cos \omega t \hat { i } + B \sin \omega t \hat { j }

Velocity, v=drdt=ddt(Acosωti^+Bsinωtj^)\vec { v } = \frac { d \vec { r } } { d t } = \frac { d } { d t } ( A \cos \omega t \hat { i } + B \sin \omega t \hat { j } )

=Aωsinωti^+Bωcosωtj^= - A \omega \sin \omega t \hat { i } + B \omega \cos \omega t \hat { j }

Acceleration,

a=dvdt=Aω2cosωti^Bω2sinωtj^\vec { a } = \frac { d \vec { v } } { d t } = - A \omega ^ { 2 } \cos \omega t \hat { i } - B \omega ^ { 2 } \sin \omega t \hat { j }

a=ω2[Acosωti^+Bsinωtj^]=ω2r\vec { a } = \omega ^ { 2 } [ A \cos \omega t \hat { i } + B \sin \omega t \hat { j } ] = - \omega ^ { 2 } \vec { r }

The force acting on the particle is

F=ma=m(ω2r)=mω2r\vec { F } = m \vec { a } = m \left( - \omega ^ { 2 } \vec { r } \right) = - m \omega ^ { 2 } \vec { r }